In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms.
Let H be a Hopf algebra over a field k. Let
\Delta
(V,\boldsymbol{.})
\boldsymbol{.}:H ⊗ V\toV
(V,\delta )
\delta:V\toH ⊗ V
\boldsymbol{.}
\delta
\delta(h\boldsymbol{.}v)=h(1)v(-1)S(h(3)) ⊗ h(2)\boldsymbol{.}v(0)
h\inH,v\inV
where, using Sweedler notation,
(\Delta ⊗ id)\Delta(h)=h(1) ⊗ h(2) ⊗ h(3)\inH ⊗ H ⊗ H
h\inH
\delta(v)=v(-1) ⊗ v(0)
\delta(v)=1 ⊗ v
V=k\{v\}
h\boldsymbol{.}v=\epsilon(h)v
\delta(v)=1 ⊗ v
V=oplusg\inVg
where each
Vg
V=oplusg\inVg
g.Vh\subset
V | |
ghg-1 |
k=C
[g]\subsetG
\chi,X
Cent(g)
g\in[g]
X | |
V=l{O} | |
[g] |
V=oplush\in[g]Vh=oplush\in[g]X
\chi | |
l{O} | |
[g] |
\chi,X
G(\chi)=kG ⊗ | |
Ind | |
kCent(g) |
X
(this can be proven easily not to depend on the choice of g)
t ⊗ v\inkG ⊗ kCent(g)X=V
t ⊗ v\in
V | |
tgt-1 |
V
ti
Cent(g)
h ⊗ v\subset[g] x X \leftrightarrow ti ⊗ v\inkG ⊗ kCent(g)X withuniquely h=tigt
-1 | |
i |
(this notation emphasizes the graduation
h ⊗ v\inVh
Let H be a Hopf algebra with invertible antipode S, and let V, W be Yetter–Drinfeld modules over H. Then the map
cV,W:V ⊗ W\toW ⊗ V
c(v ⊗ w):=v(-1)\boldsymbol{.}w ⊗ v(0),
is invertible with inverse
-1 | |
c | |
V,W |
(w ⊗ v):=v(0) ⊗ S-1(v(-1))\boldsymbol{.}w.
Further, for any three Yetter–Drinfeld modules U, V, W the map c satisfies the braid relation
(cV,W ⊗ idU)(idV ⊗ cU,W)(cU,V ⊗ idW)=(idW ⊗ cU,V)(cU,W ⊗ idV)(idU ⊗ cV,W):U ⊗ V ⊗ W\toW ⊗ V ⊗ U.
l{C}
H | |
{} | |
Hl{YD} |
. Susan Montgomery . Hopf algebras and their actions on rings . Regional Conference Series in Mathematics . 82 . Providence, RI . . 1993 . 0-8218-0738-2 . 0793.16029 .