YAMBO code explained

Yambo
Author:Andrea Marini
Developer:Davide Sangalli, Claudio Attaccalite, Andrea Ferretti, Henrique Miranda, Myrta Gruning, Conor Hogan, Daniele Varsano, Dario A. Leon, Fulvio Paleari, Igancio Alliati, Nicola Spallanzani, Nalabothula Muralidhar, Elena Molteni, Alberto Guandalini, Pedro Melo, Ryan McMillan, Fabio Affinito, Alejandro Molina-Sanchez
Latest Release Version:5.2
Latest Preview Date:<-- -->
Programming Language:Fortran, C
Operating System:Unix, Unix-like
Platform:x86, x86-64
Language:English
Genre:Many-body theory
License:GPL

Yambo is a computer software package for studying many-body theory aspects of solids and molecule systems.[1] [2] It calculates the excited state properties of physical systems from first principles, e.g., from quantum mechanics law without the use of empirical data. It is an open-source software released under the GNU General Public License (GPL). However the main development repository is private and only a subset of the features available in the private repository are cloned into the public repository and thus distributed.[3]

Excited state properties

Yambo can calculate:

RPA, Bethe Salpeter with or without Tamm-Dancoff approximation,[6] TDDFT in TD-LDA or LRC[7] [8]

Physical systems

Yambo can treat molecules and periodic systems (both metallic an insulating) in three dimensions (crystalline solids) two dimensions (surfaces) and one dimension (e.g., nanotubes, nanowires, polymer chains). It can also handle collinear (i.e., spin-polarized wave functions) and non-collinear (spinors) magnetic systems.

Typical systems are of the size of 10-100 atoms, or 10-400 electrons, per unit cell in the case of periodic systems.

Theoretical methods and approximations

Yambo relies on many-body perturbation theory and time-dependent density functional theory.[13] [14] Quasiparticle energies are calculated within the GW approximation[15] for the self energy. Optical properties are calculated either by solving the Bethe–Salpeter equation[16] [17] or by using the adiabatic local density approximation within time-dependent density functional theory.

Numerical details

Yambo uses a plane waves basis set to represent the electronic (single-particle) wavefunctions. Core electrons are described with norm-conserving pseudopotentials.The choice of a plane-wave basis set enforces the periodicity of the systems. Isolated systems, and systems that are periodic in only one or two directions can be treated by using a supercell approach.For such systems Yambo offers two numerical techniques for the treatment of the Coulomb integrals: the cut-off[18] and the random-integration method.

Technical details

User interface

System requirements, portability

Learning Yambo

The Yambo team provides a wiki web-page with a list of tutorials and lecture notes.On the yambo web-site there is also a list of all thesis done with the code.

Non-distributed part

Part of the YAMBO code is kept under a private repository.These are the features implemented and not yet distributed:

Notes and References

  1. Marini . Andrea . Hogan . Conor . Grüning . Myrta . Varsano . Daniele . yambo: An ab initio tool for excited state calculations . Computer Physics Communications . 180 . 8 . 2009 . 10.1016/j.cpc.2009.02.003 . 1392–1403. 0810.3118 . 2009CoPhC.180.1392M . 8269390 .
  2. Sangalli. D. Ferretti. A. Miranda. H. Attaccalite. C. Marri. I. Cannuccia. E. Melo. P. Marsili. M. Paleari. F. Marrazzo. A. Prandini. G. Bonfà. P. Atambo. M O. Affinito. F. Palummo. M. Molina-Sánchez. A. Hogan. C. Grüning. M. Varsano. D. Marini. A. Many-body perturbation theory calculations using the yambo code. Journal of Physics: Condensed Matter. 31. 32. 2019. 325902. 10.1088/1361-648X/ab15d0. 30943462. 1902.03837. 2019JPCM...31F5902S. free.
  3. Web site: What Can Yambo Do? . Yambo . 2021-05-05 .
  4. Book: Aulbur . Wilfried G. . Jönsson . Lars . Wilkins . John W. . Solid State Physics . Quasiparticle Calculations in Solids . Elsevier . 54. 2000 . 978-0-12-607754-4 . 10.1016/s0081-1947(08)60248-9 . 1–218.
  5. Marini . Andrea . Del Sole . Rodolfo . Rubio . Angel . Onida . Giovanni . Quasiparticle band-structure effects on thedhole lifetimes of copper within the GW approximation . Physical Review B . 66 . 16 . 30 October 2002 . 10.1103/physrevb.66.161104. cond-mat/0208575 . 161104(R). 2002PhRvB..66p1104M . 10261/98481 . 37797921 . free .
  6. Grüning . Myrta . Marini . Andrea . Gonze . Xavier . Exciton-Plasmon States in Nanoscale Materials: Breakdown of the Tamm−Dancoff Approximation . Nano Letters . 9 . 8 . 12 August 2009 . 10.1021/nl803717g . 2820–2824. 19637906 . 0809.3389 . 2009NanoL...9.2820G . 28990507 .
  7. Botti . Silvana . Sottile . Francesco . Vast . Nathalie . Olevano . Valerio . Reining . Lucia. Lucia Reining . Weissker . Hans-Christian . Rubio . Angel . Onida . Giovanni . Del Sole . Rodolfo . Godby . R. W. . Long-range contribution to the exchange-correlation kernel of time-dependent density functional theory . Physical Review B . 69 . 15 . 23 April 2004 . 10.1103/physrevb.69.155112 . 155112. 2004PhRvB..69o5112B . 10261/98108 . free .
  8. Botti . Silvana . Fourreau . Armel . Nguyen . François . Renault . Yves-Olivier . Sottile . Francesco . Reining . Lucia. Lucia Reining . Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids . Physical Review B . 72 . 12 . 6 September 2005 . 10.1103/physrevb.72.125203 . 125203. 2005PhRvB..72l5203B .
  9. Marini . Andrea . Ab InitioFinite-Temperature Excitons . Physical Review Letters . 101 . 10 . 4 September 2008 . 10.1103/physrevlett.101.106405 . 106405. 18851235 . 0712.3365 . 2008PhRvL.101j6405M . 35012998 .
  10. Cannuccia . Elena . Marini . Andrea . Effect of the Quantum Zero-Point Atomic Motion on the Optical and Electronic Properties of Diamond and Trans-Polyacetylene . Physical Review Letters . 107 . 25 . 14 December 2011 . 10.1103/physrevlett.107.255501 . 255501. 22243089 . 1106.1459 . 2011PhRvL.107y5501C . 44572818 .
  11. Sangalli . Davide . Marini . Andrea . Debernardi . Alberto . Pseudopotential-based first-principles approach to the magneto-optical Kerr effect: From metals to the inclusion of local fields and excitonic effects . Physical Review B . 86 . 12 . 27 September 2012 . 10.1103/physrevb.86.125139 . 125139. 1205.1994 . 2012PhRvB..86l5139S . 119108665 .
  12. Hogan . Conor . Palummo . Maurizia . Del Sole . Rodolfo . Theory of dielectric screening and electron energy loss spectroscopy at surfaces . Comptes Rendus Physique . 10 . 6 . 2009 . 10.1016/j.crhy.2009.03.015 . 560–574. 2009CRPhy..10..560H .
  13. Runge . Erich . Gross . E. K. U. . Density-Functional Theory for Time-Dependent Systems . Physical Review Letters . 52 . 12 . 19 March 1984 . 10.1103/physrevlett.52.997 . 997–1000. 1984PhRvL..52..997R .
  14. Gross . E. K. U. . Kohn . Walter . Local density-functional theory of frequency-dependent linear response . Physical Review Letters . 55 . 26 . 23 December 1985 . 10.1103/physrevlett.55.2850 . 2850–2852. 10032255 . 1985PhRvL..55.2850G .
  15. Aryasetiawan . F . Gunnarsson . O . The GW method . Reports on Progress in Physics . 61 . 3 . 1 February 1998 . 10.1088/0034-4885/61/3/002 . 237–312. cond-mat/9712013 . 1998RPPh...61..237A . 250874552 .
  16. http://www.scholarpedia.org/article/Bethe-Salpeter_equation_%28origins%29 Bethe-Salpeter equation: the origins
  17. Strinati . G. . Application of the Green's functions method to the study of the optical properties of semiconductors . La Rivista del Nuovo Cimento . 11 . 12 . 1988 . 10.1007/bf02725962 . 1–86. 1988NCimR..11l...1S . 122125343 .
  18. Rozzi . Carlo A. . Varsano . Daniele . Marini . Andrea . Gross . Eberhard K. U. . Rubio . Angel . Exact Coulomb cutoff technique for supercell calculations . Physical Review B . 73 . 20 . 26 May 2006 . 10.1103/physrevb.73.205119 . cond-mat/0601031 . 205119. 2006PhRvB..73t5119R . 10261/97933 . 26312984 . free .
  19. Caliste . D. . Pouillon . Y. . Verstraete . M.J. . Olevano . V. . Gonze . X. . Sharing electronic structure and crystallographic data with ETSF_IO . Computer Physics Communications . 179 . 10 . 2008 . 10.1016/j.cpc.2008.05.007 . 748–758. 2008CoPhC.179..748C .
  20. Marini . Andrea . García-González . P. . Rubio . Angel . First-Principles Description of Correlation Effects in Layered Materials . Physical Review Letters . 96 . 13 . 5 April 2006 . 10.1103/physrevlett.96.136404. cond-mat/0510221 . 136404. 16712011 . 2006PhRvL..96m6404M . 10261/97928 . 13324711 . free .
  21. Sangalli . Davide . Marini . Andrea . Anomalous Aharonov–Bohm Gap Oscillations in Carbon Nanotubes . Nano Letters . 11 . 10 . 12 October 2011 . 10.1021/nl200871v . 4052–4057. 21805987 . 1106.5695 . 2011NanoL..11.4052S . 10946434 .
  22. Bruneval . Fabien . Vast . Nathalie . Reining . Lucia. Lucia Reining . Effect of self-consistency on quasiparticles in solids . Physical Review B . 74 . 4 . 6 July 2006 . 10.1103/physrevb.74.045102 . 045102. 2006PhRvB..74d5102B .
  23. Marini . Andrea . Del Sole . Rodolfo . Dynamical Excitonic Effects in Metals and Semiconductors . Physical Review Letters . 91 . 17 . 23 October 2003 . 10.1103/physrevlett.91.176402 . 176402. 14611364 . cond-mat/0308271 . 2003PhRvL..91q6402M . 8472529 .
  24. Attaccalite . C. . Grüning . M. . Marini . A. . Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe-Salpeter equation . Physical Review B . 84 . 24 . 13 December 2011 . 10.1103/physrevb.84.245110 . 245110. 1109.2424 . 2011PhRvB..84x5110A . 118694162 .
  25. Marini . Andrea . Del Sole . Rodolfo . Rubio . Angel . Bound Excitons in Time-Dependent Density-Functional Theory: Optical and Energy-Loss Spectra . Physical Review Letters . 91 . 25 . 16 December 2003 . 10.1103/physrevlett.91.256402 . 256402. 14754131 . cond-mat/0310495 . 2003PhRvL..91y6402M . 17007016 .