Xeno nucleic acid explained

Xeno nucleic acids (XNA) are synthetic nucleic acid analogues that have a different backbone from the ribose and deoxyribose found in the nucleic acids of naturally occurring RNA and DNA.[1]

The same nucleobases can be used to store genetic information and interact with DNA, RNA, or other XNA bases, but the different backbone gives the structure different stability, and it cannot be processed by naturally occurring cellular processes. For example, natural DNA polymerases cannot read and duplicate this information, thus the genetic information stored in XNA is invisible to DNA-based organisms.[2]

, at least six types of synthetic sugars have been shown to form nucleic acid backbones that can store and retrieve genetic information. Research is now being done to create synthetic polymerases to transform XNA. The study of its production and application has created a field known as xenobiology.

Background

The structure of DNA was discovered in 1953. Around the early 2000s, researchers created a number of exotic DNA-like structures, XNA. These are synthetic polymers that can carry the same information as DNA, but with different molecular constituents. The "X" in XNA stands for "xeno-", meaning strange or alien, indicating the difference in the molecular structure as compared to DNA or RNA.

Not much was done with XNA until the development of special polymerase enzyme, capable of copying XNA from a DNA template as well as copying XNA back into DNA.[3] Pinheiro et al. (2012), for example, has demonstrated such an XNA-capable polymerase that works on sequences of around 100 base pairs in length.[4] More recently, synthetic biologists Philipp Holliger and Alexander Taylor succeeded in creating XNAzymes, the XNA equivalent of a ribozyme, enzymes made of RNA. This demonstrates that XNAs not only store hereditary information, but can also serve as enzymes, raising the possibility that life elsewhere could have begun with something other than RNA or DNA.[5]

Structure

Strands of DNA and RNA are formed by stringing together long chains of molecules called nucleotides. A nucleotide is made up of three chemical components: a phosphate, a five-carbon sugar group (this can be either a deoxyribose sugar—which gives us the "D" in DNA—or a ribose sugar—the "R" in RNA), and one of five standard bases (adenine, guanine, cytosine, thymine or uracil).

The molecules that piece together to form the xeno nucleic acids are almost identical to those of DNA and RNA, with one exception: in XNA nucleotides, the deoxyribose and ribose sugar groups of DNA and RNA have been replaced with other chemical structures. These substitutions make XNAs functionally and structurally analogous to DNA and RNA despite being unnatural and artificial.

XNA exhibits a variety of structural chemical changes relative to its natural counterparts. Types of synthetic XNA created so far include:

HNA could potentially be used as a drug that can recognize and bind to specified sequences. Scientists have been able to isolate HNAs for the possible binding of sequences that target HIV.[6] Research has also shown that CeNAs with stereochemistry similar to the D form can create stable duplexes with itself and RNA. It was shown that CeNAs are not as stable when they form duplexes with DNA.[7]

Implications

The study of XNA is not intended to give scientists a better understanding of biological evolution as it has occurred historically, but rather to explore ways in which we might control and even reprogram the genetic makeup of biological organisms in future. XNA has shown significant potential in solving the current issue of genetic pollution in genetically modified organisms.[8] While DNA is incredibly efficient in its ability to store genetic information and lend complex biological diversity, its four-letter genetic alphabet is relatively limited. Using a genetic code of six XNAs rather than the four naturally occurring DNA nucleotide bases yields endless opportunities for genetic modification and expansion of chemical functionality.[9]

The development of various hypotheses and theories about XNAs have altered a key factor in our current understanding of nucleic acids: heredity and evolution are not limited to DNA and RNA as once thought, but are simply processes that have developed from polymers capable of storing information.[4] Investigations into XNAs will allow researchers to assess whether DNA and RNA are the most efficient and desirable building blocks of life, or if these two molecules emerged randomly after evolving from a larger class of chemical ancestors.[10]

Applications

One theory of XNA utilization is its incorporation into medicine as a disease-fighting agent. Some enzymes and antibodies that are currently administered for various disease treatments are broken down too quickly in the stomach or bloodstream. Because XNA is foreign and because it is believed that humans have not yet evolved the enzymes to break them down, XNAs may be able to serve as a more durable counterpart to the DNA and RNA-based treatment methodologies that are currently in use.[11]

Experiments with XNA have already allowed for the replacement and enlargement of this genetic alphabet, and XNAs have shown complementarity with DNA and RNA nucleotides, suggesting potential for its transcription and recombination. One experiment conducted at the University of Florida led to the production of an XNA aptamer by the AEGIS-SELEX (artificially expanded genetic information system - systematic evolution of ligands by exponential enrichment) method, followed by successful binding to a line of breast cancer cells.[12] Furthermore, experiments in the model bacterium E. coli have demonstrated the ability for XNA to serve as a biological template for DNA in vivo.[13]

In moving forward with genetic research on XNAs, various questions must come into consideration regarding biosafety, biosecurity, ethics, and governance/regulation. One of the key questions here is whether XNA in an in vivo setting would intermix with DNA and RNA in its natural environment, thereby rendering scientists unable to control or predict its implications in genetic mutation.

XNA also has potential applications to be used as catalysts, much like RNA has the ability to be used as an enzyme. Researchers have shown XNA is able to cleave and ligate DNA, RNA and other XNA sequences, with the most activity being XNA catalyzed reactions on XNA molecules. This research may be used in determining whether DNA and RNA's role in life emerged through natural selection processes or if it was simply a coincidental occurrence.[14]

XNA may be employed as molecular clamps in quantitative real-time polymerase chain reactions (qPCR) by hybridizing with target DNA sequences.[15] In a study published in PLOS ONE, an XNA-mediated molecular clamping assay detected mutant cell-free DNA (cfDNA) from precancerous colorectal cancer (CRC) lesions and colorectal cancer.[15] XNA may also act as highly specific molecular probes for detection of nucleic acid target sequence.[16]

Notes and References

  1. Book: Schmidt, Markus . vanc . Synthetic Biology . 9 May 2013. 2012. John Wiley & Sons. 978-3-527-65926-5. 151–.
  2. Schmidt M . Xenobiology: a new form of life as the ultimate biosafety tool . BioEssays . 32 . 4 . 322–331 . April 2010 . 20217844 . 2909387 . 10.1002/bies.200900147 .
  3. Web site: Gonzales . Robbie . vanc . XNA Is Synthetic DNA That's Stronger than the Real Thing . . 19 April 2012 . 15 October 2015 .
  4. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P . 6 . Synthetic genetic polymers capable of heredity and evolution . Science . 336 . 6079 . 341–344 . April 2012 . 22517858 . 3362463 . 10.1126/science.1217622 . 2012Sci...336..341P .
  5. Web site: . World's first artificial enzymes created using synthetic biology . 1 December 2014 . https://web.archive.org/web/20151125073811/http://www.mrc.ac.uk/news/browse/world-s-first-artificial-enzymes-created-using-synthetic-biology/ . 25 November 2015 . 13 January 2016 . bot: unknown .
  6. Web site: Polymers perform non-DNA evolution . Andy . Extance . vanc . 19 April 2012 . . 15 October 2015.
  7. Gu P, Schepers G, Rozenski J, Van Aerschot A, Herdewijn P . Base pairing properties of D- and L-cyclohexene nucleic acids (CeNA) . Oligonucleotides . 13 . 6 . 479–489 . 2003 . 15025914 . 10.1089/154545703322860799 .
  8. Herdewijn P, Marlière P . Toward safe genetically modified organisms through the chemical diversification of nucleic acids . Chemistry & Biodiversity . 6 . 6 . 791–808 . June 2009 . 19554563 . 10.1002/cbdv.200900083 . 8572188 .
  9. Pinheiro VB, Holliger P . The XNA world: progress towards replication and evolution of synthetic genetic polymers . Current Opinion in Chemical Biology . 16 . 3–4 . 245–252 . August 2012 . 22704981 . 10.1016/j.cbpa.2012.05.198 .
  10. Hunter P . XNA marks the spot. What can we learn about the origins of life and the treatment of disease through artificial nucleic acids? . EMBO Reports . 14 . 5 . 410–413 . May 2013 . 23579343 . 3642382 . 10.1038/embor.2013.42 .
  11. Web site: XNA: Synthetic DNA That Can Evolve. . 19 April 2012 . 17 November 2015.
  12. Sefah K, Yang Z, Bradley KM, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA . 6 . In vitro selection with artificial expanded genetic information systems . Proceedings of the National Academy of Sciences of the United States of America . 111 . 4 . 1449–1454 . January 2014 . 24379378 . 3910645 . 10.1073/pnas.1311778111 . free . 2014PNAS..111.1449S .
  13. Pezo V, Liu FW, Abramov M, Froeyen M, Herdewijn P, Marlière P . Binary genetic cassettes for selecting XNA-templated DNA synthesis in vivo . Angewandte Chemie . 52 . 31 . 8139–8143 . July 2013 . 23804524 . 10.1002/anie.201303288 .
  14. Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, Weeks KM, Herdewijn P, Holliger P . 6 . Catalysts from synthetic genetic polymers . Nature . 518 . 7539 . 427–430 . February 2015 . 25470036 . 4336857 . 10.1038/nature13982 . 2015Natur.518..427T .
  15. Sun Q, Pastor L, Du J, Powell MJ, Zhang A, Bodmer W, Wu J, Zheng S, Sha MY . 6 . A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening . PLOS ONE . 16 . 10 . e0244332 . 2021-10-05 . 34610014 . 8491914 . 10.1371/journal.pone.0244332 . 2021PLoSO..1644332S . free .
  16. D'Agata R, Giuffrida MC, Spoto G . Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis . Molecules . 22 . 11 . 1951 . November 2017 . 29137122 . 10.3390/molecules22111951 . 6150339 . free .