X-ray magnetic circular dichroism explained

X-ray magnetic circular dichroism (XMCD) is a difference spectrum of two X-ray absorption spectra (XAS) taken in a magnetic field, one taken with left circularly polarized light, and one with right circularly polarized light.[1] By closely analyzing the difference in the XMCD spectrum, information can be obtained on the magnetic properties of the atom, such as its spin and orbital magnetic moment. Using XMCD magnetic moments below 10−5 μB can be observed.[2]

In the case of transition metals such as iron, cobalt, and nickel, the absorption spectra for XMCD are usually measured at the L-edge. This corresponds to the process in the iron case: with iron, a 2p electron is excited to a 3d state by an X-ray of about 700 eV.[3] Because the 3d electron states are the origin of the magnetic properties of the elements, the spectra contain information on the magnetic properties. In rare-earth elements usually, the M4,5-edges are measured, corresponding to electron excitations from a 3d state to mostly 4f states.

Line intensities and selection rules

The line intensities and selection rules of XMCD can be understood by considering the transition matrix elements of an atomic state

\vert{njm}\rangle

excited by circularly polarised light.[4] [5] Here

n

is the principal,

j

the angular momentum and

m

the magnetic quantum numbers. The polarisation vector of left and right circular polarised light can be rewritten in terms of spherical harmonics\mathbf = \frac\left(x \pm iy\right) = \sqrt r Y^_\left(\theta,\varphi\right)leading to an expression for the transition matrix element

\langlen\primej\primem\prime\verter\vertnjm\rangle

which can be simplified using the 3-j symbol:\langle n^j^m^\vert \mathbf\cdot\mathbf\vert njm\rangle = \sqrt\langle n^j^m^\vert rY_^\left(\theta,\varphi\right)\vert njm\rangle\propto\int_^dr~rR_(r)R_(r)\int_d\Omega~^\left(\theta,\varphi\right) Y_^\left(\theta,\varphi\right) Y_^\left(\theta,\varphi\right) =\sqrt \langle\vert \rangle \langle \vert \rangleThe radial part is referred to as the line strength while the angular one contains symmetries from which selection rules can be deduced. Rewriting the product of three spherical harmonics with the 3-j symbol finally leads to:\sqrt \langle \vert \rangle \langle \vert \rangle = \sqrt\begin & j & 1 \\ 0 & 0 & 0 \end\begin j^ & j & 1 \\ m^ & m & \mp 1\endThe 3-j symbols are not zero only if

j,j\prime,m,m\prime

satisfy the following conditions giving us the following selection rules for dipole transitions with circular polarised light:

\DeltaJ=\pm1

\Deltam=0,\pm1

Derivation of sum rules for 3d and 4f systems

We will derive the XMCD sum rules from their original sources, as presented in works by Carra, Thole, Koenig, Sette, Altarelli, van der Laan, and Wang [6] [7] [8] . The following equations can be used to derive the actual magnetic moments associated with the states:

\begin{align} \mul&=-\langleLz\rangle\muB\\ \mus&=-2\langleSz\rangle\muB \end{align}

We employ the following approximation:

\begin{align} \muXAS'&=\mu++\mu-+\mu0\\ &\mu++\mu-+

\mu++\mu-
2

\\ &=

3
2

\left(\mu++\mu-\right), \end{align}

where

\mu0

represents linear polarization,

\mu-

right circular polarization, and

\mu+

left circular polarization. This distinction is crucial, as experiments at beamlines typically utilize either left and right circular polarization or switch the field direction while maintaining the same circular polarization, or a combination of both.

The sum rules, as presented in the aforementioned references, are:

\begin{align} \langleSz\rangle&=

\intd\omega(\mu+-
-)-[(c+1)/c]\int
\mu
j-
d\omega(\mu+-\mu-)
j+
\intd\omega{(\mu++\mu-+\mu0)
j++j-
} \cdot \frac \\ &- \frac \langle T_z \rangle,\end

Here,

\langleTz\rangle

denotes the magnetic dipole tensor, c and l represent the initial and final orbital respectively (s,p,d,f,... = 0,1,2,3,...). The edges integrated within the measured signal are described by

j\pm=c\pm1/2

, and n signifies the number of electrons in the final shell.

The magnetic orbital moment

\langleLz\rangle

, using the same sign conventions, can be expressed as:

\begin{align} \langleLz\rangle&=

\intd\omega(\mu+-\mu-)
j++j-
\intd\omega{(\mu++\mu-+\mu0)
j++j-
} \cdot \frac \end

For moment calculations, we use c=1 and l=2 for L2,3-edges, and c=2 and l=3 for M4,5-edges. Applying the earlier approximation, we can express the L2,3-edges as:

\begin{align} \langleSz\rangle&=(10-n)

\intd\omega(\mu+-
-)-2\int
\mu
j-
d\omega(\mu+-\mu-)
j+
3
\int
j++j-
d\omega{(\mu++\mu-)
2
} \\ &\cdot \frac - \frac \langle T_z \rangle \\ &= (10-n)\frac \\ &\cdot \frac - \frac \langle T_z \rangle \\ &= (10-n) \frac - \frac \langle T_z \rangle. \end

For 3d transitions,

\langleLz\rangle

is calculated as:

\begin{align} \langleLz\rangle&=(10-n)

\intd\omega(\mu+-\mu-)
j++j-
3
\int
j++j-
d\omega{(\mu++\mu-)
2
} \cdot \frac \\ &= (10-n) \frac \frac\end

For 4f rare earth metals (M4,5-edges), using c=2 and l=3:

\begin{align} \langleSz\rangle&=(14-n)

\intd\omega(\mu+-
-)-[3/2]\int
\mu
j-
d\omega(\mu+-\mu-)
j+
3
\int
j++j-
d\omega{(\mu++\mu-)
2
} \cdot \frac \\ &- \frac \langle T_z \rangle\\ &= (14-n)\frac\cdot \frac \\ &- \frac \langle T_z \rangle \\ &= (14-n)\frac\cdot \frac - \frac \langle T_z \rangle \\ &= (14-n)\frac - 3 \langle T_z \rangle\end

The calculation of

\langleLz\rangle

for 4f transitions is as follows:

\begin{align} \langleLz\rangle&=(14-n)

\intd\omega(\mu+-\mu-)
j++j-
3
\int
j++j-
d\omega{(\mu++\mu-)
2
}\cdot \frac \\ &= (14-n)\frac\cdot \frac\\ &= (14-n)\cdot 2\frac\end

When

\langleTz\rangle

is neglected, the term is commonly referred to as the effective spin

\langle

eff
S
z

\rangle

. By disregarding

\langleLz\rangle

and calculating the effective spin moment

\langle

eff
S
z

\rangle

, it becomes apparent that both the non-magnetic XAS component
\int
j++j-

d\omega{(\mu++\mu-)}

and the number of electrons in the shell n appear in both equations. This allows for the calculation of the orbital to effective spin moment ratio using only the XMCD spectra.

See also

Notes and References

  1. Zhao . Jijun . Huang . Xiaoming . Jin . Peng . Chen . Zhongfang . April 2015 . Magnetic properties of atomic clusters and endohedral metallofullerenes . Coordination Chemistry Reviews . en . 289-290 . 315–340 . 10.1016/j.ccr.2014.12.013 . 0010-8545.
  2. Book: Handbook of magnetism and advanced magnetic materials . 2007 . John Wiley & Sons . Helmut Kronmüller . Stuart S. P. Parkin . 978-0-470-02217-7 . Hoboken, NJ . 124165851.
  3. Stöhr . J. . 1995-12-15 . X-ray magnetic circular dichroism spectroscopy of transition metal thin films . Journal of Electron Spectroscopy and Related Phenomena . Future Perspectives for Electron Spectroscopy with Synchrotron Radiation . en . 75 . 253–272 . 10.1016/0368-2048(95)02537-5 . 0368-2048.
  4. Book: de Groot, F. . Vogel, J. . Fundamentals of X-ray Absorption and Dichroism: The Multiplet Approach . Neutron and X-ray Spectroscopy . 2006 . 978-1-4020-3337-7 . 3–66 . 10.1007/1-4020-3337-0_1.
  5. Book: J. Stöhr . Y. Wu . X-ray Magnetic Circular Dichroism: Basic concepts and theory for 3d transition metal atoms . New Directions in Research with Third-Generation Soft X-Ray Synchrotron Radiation Sources . 1994 . 978-94-010-4375-5 . 221–250 . 10.1007/978-94-011-0868-3.
  6. Thole. B. T.. Carra. P.. Sette. F.. van der Laan. G.. X-ray circular dichroism as a probe of orbital magnetization. Physical Review Letters. 68. 12. 1992. 1943–1946. 10.1103/PhysRevLett.68.1943.
  7. Carra. P.. König. H.. Thole. B. T.. Altarelli. M.. Magnetic X-ray dichroism: General features of dipolar and quadrupolar spectra. Physica B: Condensed Matter. 192. 1-2. 1993. 182-190. 10.1016/0921-4526(93)90119-Q.
  8. Carra. P.. Thole. B. T.. Altarelli. M.. Wang. X.. X-ray circular dichroism and local magnetic fields. Physical Review Letters. 70. 5. 1993. 694–697. 10.1103/PhysRevLett.70.694.