In mathematics, the Wright omega function or Wright function,[1] denoted ω, is defined in terms of the Lambert W function as:
\omega(z)=
W | ||||||
|
(ez).
One of the main applications of this function is in the resolution of the equation z = ln(z), as the only solution is given by z = e-ω(π i).
y = ω(z) is the unique solution, when
z ≠ x\pmi\pi
The Wright omega function satisfies the relation
Wk(z)=\omega(ln(z)+2\piik)
It also satisfies the differential equation
d\omega | |
dz |
=
\omega | |
1+\omega |
wherever ω is analytic (as can be seen by performing separation of variables and recovering the equation
ln(\omega)+\omega=z
\int\omegandz=\begin{cases}
\omegan+1-1 | |
n+1 |
+
\omegan | |
n |
&ifn ≠ -1,\\ ln(\omega)-
1 | |
\omega |
&ifn=-1. \end{cases}
Its Taylor series around the point
a=\omegaa+ln(\omegaa)
\omega(z)=
+infty | |
\sum | |
n=0 |
qn(\omegaa) | ||||||
|
(z-a)n | |
n! |
where
qn(w)=
n-1 | |
\sum | |
k=0 |
\langle \langle\begin{matrix} n+1\\ k \end{matrix} \rangle \rangle(-1)kwk+1
in which
\langle \langle\begin{matrix} n\\ k \end{matrix} \rangle \rangle
is a second-order Eulerian number.
\begin{array}{lll} \omega(0)&=W0(1)& ≈ 0.56714\\ \omega(1)&=1&\\ \omega(-1\pmi\pi)&=-1&\\ \omega(-
1 | |
3 |
+ln\left(
1 | |
3 |
\right)+i\pi)&=-
1 | |
3 |
&\\ \omega(-
1 | |
3 |
+ln\left(
1 | |
3 |
\right)-i\pi)&=W-1\left(-
1 | |
3 |
| ||||
e |
\right)& ≈ -2.237147028\\ \end{array}