In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If
\phi
(-infty,infty)
p(\phi)
z=ei\phi
pwz(\theta)
\theta=\arg(z)
(-\pi,\pi]
pw(\theta)
Any probability density function
p(\phi)
\theta=\phi\mod2\pi
2\pi
is
pw(\theta)=\sum
infty | |
k=-infty |
{p(\theta+2\pik)}
which is a periodic sum of period
2\pi
(-\pi<\theta\le\pi)
ln(ei\theta)=\arg(ei\theta)=\theta
In most situations, a process involving circular statistics produces angles (
\phi
(-infty,infty)
p(\phi)
\theta
2\pi
2\pi
\phi
\theta=\phi+2\pia
a
If we wish to calculate the expected value of some function of the measured angle it will be:
\langle
infty | |
f(\theta)\rangle=\int | |
-infty |
p(\phi)f(\phi+2\pia)d\phi
We can express the integral as a sum of integrals over periods of
2\pi
\langle
infty | |
f(\theta)\rangle=\sum | |
k=-infty |
2\pi(k+1) | |
\int | |
2\pik |
p(\phi)f(\phi+2\pia)d\phi
Changing the variable of integration to
\theta'=\phi-2\pik
\langlef(\theta)\rangle=
2\pi | |
\int | |
0 |
pw(\theta')f(\theta'+2\pia')d\theta'
where
pw(\theta')
a'
(a'=a+k)
a'
f(\theta)
z=ei\theta
z
\phi
z=ei\theta=ei\phi
Calculating the expected value of a function of
z
\langlef(z)\rangle=
2\pi | |
\int | |
0 |
i\theta' | |
p | |
w(\theta')f(e |
)d\theta'
For this reason, the
z
\theta
z
\langlef(z)\rangle=\ointpwz(z)f(z)dz
where
pw(z)
pw(\theta)|d\theta|=pwz(z)|dz|
F
pw(\vec\theta)=\sum
infty | |
k1,...,kF=-infty |
{p(\vec\theta+2\pik1e1+...+2\pikFeF)}
T | |
e | |
k=(0,...,0,1,0,...,0) |
k
A fundamental wrapped distribution is the Dirac comb, which is a wrapped Dirac delta function:
\Delta2\pi
infty | |
(\theta)=\sum | |
k=-infty |
{\delta(\theta+2\pik)}
Using the delta function, a general wrapped distribution can be written
pw(\theta)=\sum
infty | |
k=-infty |
infty | |
\int | |
-infty |
p(\theta')\delta(\theta-\theta'+2\pik)d\theta'
Exchanging the order of summation and integration, any wrapped distribution can be written as the convolution of the unwrapped distribution and a Dirac comb:
pw(\theta)=\int
infty | |
-infty |
p(\theta')\Delta2\pi(\theta-\theta')d\theta'
The Dirac comb may also be expressed as a sum of exponentials, so we may write:
p | ||||
|
infty | |
\int | |
-infty |
infty | |
p(\theta')\sum | |
n=-infty |
ein(\theta-\theta')d\theta'
Again exchanging the order of summation and integration:
p | ||||
|
infty | |
\sum | |
n=-infty |
infty | |
\int | |
-infty |
p(\theta')ein(\theta-\theta')d\theta'
Using the definition of
\phi(s)
p(\theta)
p | ||||
|
infty | |
\sum | |
n=-infty |
\phi(n)e-in\theta
or
pwz(z)=
1 | |
2\pi |
infty | |
\sum | |
n=-infty |
\phi(n)z-n
Analogous to linear distributions,
\phi(m)
The moments of the wrapped distribution
pw(z)
\langlezm\rangle=\ointpwz(z)zmdz
Expressing
pw(z)
\langlezm\rangle=
1 | |
2\pi |
infty | |
\sum | |
n=-infty |
\phi(n)\ointzm-ndz
From the residue theorem we have
\ointzm-ndz=2\pi\deltam-n
where
\deltak
\langlezm\rangle=\phi(m)
If
X
P
Z=ei
P
\theta=\arg(Z)
P
-\pi<\theta\leq\pi
The information entropy of a circular distribution with probability density
pw(\theta)
H=-\int\Gammapw(\theta)ln(pw(\theta))d\theta
where
\Gamma
2\pi
The moments of the distribution
\phi(n)
p | ||||
|
infty | |
\sum | |
n=-infty |
\phine-in\theta
If the logarithm of the probability density can also be expressed as a Fourier series:
ln(pw(\theta))=\sum
infty | |
m=-infty |
cmeim\theta
where
c | ||||
|
\int\Gamma
-im\theta | |
ln(p | |
w(\theta))e |
d\theta
Then, exchanging the order of integration and summation, the entropy may be written as:
H=- | 1 |
2\pi |
infty | |
\sum | |
n=-infty |
cm\phin\int\Gammaei(m-n)\thetad\theta
Using the orthogonality of the Fourier basis, the integral may be reduced to:
infty | |
H=-\sum | |
n=-infty |
cn\phin
For the particular case when the probability density is symmetric about the mean,
c-m=cm
ln(pw(\theta))=c0+
infty | |
2\sum | |
m=1 |
cm\cos(m\theta)
and
c | ||||
|
\int\Gammaln(pw(\theta))\cos(m\theta)d\theta
and, since normalization requires that
\phi0=1
H=-c0-2\sum
infty | |
n=1 |
cn\phin