In coding theory, the Wozencraft ensemble is a set of linear codes in which most of codes satisfy the Gilbert-Varshamov bound. It is named after John Wozencraft, who proved its existence. The ensemble is described by, who attributes it to Wozencraft. used the Wozencraft ensemble as the inner codes in his construction of strongly explicit asymptotically good code.
Theorem: Let
\varepsilon>0.
k
N | |
C | |
in |
\tfrac{1}{2}
N=qk-1
(1-\varepsilon)N
i,
i | |
C | |
in |
\geqslant
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right)
Here relative distance is the ratio of minimum distance to block length. And
Hq
Hq(x)=xlogq(q-1)-xlogqx-(1-x)logq(1-x).
In fact, to show the existence of this set of linear codes, we will specify this ensemble explicitly as follows: for
\alpha\in
F | |
qk |
-\{0\}
\begin{cases}
\alpha | |
C | |
in |
k | |
:F | |
q |
\to
2k | |
F | |
q |
\alpha | |
\ C | |
in |
(x)=(x,\alphax)\end{cases}
Here we can notice that
x\in
k | |
F | |
q |
\alpha\in
F | |
qk |
\alphax
k | |
F | |
q |
F | |
qk |
This ensemble is due to Wozencraft and is called the Wozencraft ensemble.
For all
x,y\in
k | |
F | |
q |
\alpha | |
C | |
in |
(x)+
\alpha | |
C | |
in |
(y)=(x,\alphax)+(y,\alphay)=(x+y,\alpha(x+y))=
\alpha | |
C | |
in |
(x+y)
a\inFq,
\alpha | |
aC | |
in |
(x)=a(x,\alphax)=(ax,\alpha(ax))=
\alpha | |
C | |
in |
(ax)
So
\alpha | |
C | |
in |
\alpha\in
F | |
qk |
-\{0\}
Now we know that Wozencraft ensemble contains linear codes with rate
\tfrac{1}{2}
(1-\varepsilon)N
\geqslant
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right)
To prove that there are at least
(1-\varepsilon)N
\geqslant
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right)
\varepsilonN
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right)
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k.
Notice that in a linear code, the distance is equal to the minimum weight of all codewords of that code. This fact is the property of linear code. So if one non-zero codeword has weight
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k.
Let
P
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k.
|P|
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k.
Lemma. Two linear codes
\alpha1 | |
C | |
in |
\alpha2 | |
C | |
in |
\alpha1,\alpha2\in
F | |
qk |
Proof. Suppose there exist distinct non-zero elements
\alpha1,\alpha2\in
F | |
qk |
\alpha1 | |
C | |
in |
\alpha2 | |
C | |
in |
y.
y\in
\alpha1 | |
C | |
in |
,y=(y1,\alpha1y1)
y1\in
k | |
F | |
q |
y=(y2,\alpha2y2)
y2\in
k. | |
F | |
q |
y
y1,y2\ne0.
(y1,\alpha1y1)=(y2,\alpha2y2)
y1=y2\ne0
\alpha1y1=\alpha2y2.
\alpha1=\alpha2
Any linear code having distance
-1 | |
<H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k
<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k.
|P|
y
wt(y)<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k
y
wt(y)
y
y
Denote
S=\left\{y : wt(y)<
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k\right\}
Then:[1]
\begin{align} |P|&\leqslant|S|\\ &\leqslantVolq\left
-1 | |
(H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k,2k\right)&&Volq(r,n)isthevolumeofHammingballofradiusrin[q]n\\ &\leqslant
| ||||||||||||||||
q |
&&Volq(pn,n)\leqslant
Hq(p)n | |
q |
\\ &=
| ||||||
q |
\\ &=qk(1-2\varepsilon)\\ &<\varepsilon(qk-1)&&forklargeenough\\ &=\varepsilonN \end{align}
So
|P|<\varepsilonN
\geqslant
-1 | |
H | |
q |
\left(\tfrac{1}{2}-\varepsilon\right) ⋅ 2k
N-\varepsilonN=(1-\varepsilon)N