Wilson prime explained
Named After: | John Wilson |
Terms Number: | 3 |
First Terms: | 5, 13, 563 |
Oeis: | A007540 |
Oeis Name: | Wilson primes: primes
such that (p-1)!\equiv-1 (\operatorname{mod}{p2})
|
such that
divides
, where "
" denotes the
factorial function; compare this with
Wilson's theorem, which states that every prime
divides
. Both are named for 18th-century
English mathematician
John Wilson; in 1770,
Edward Waring credited the theorem to Wilson,
[1] although it had been stated centuries earlier by
Ibn al-Haytham.
The only known Wilson primes are 5, 13, and 563 . Costa et al. write that "the case
is trivial", and credit the observation that 13 is a Wilson prime to .
[2] Early work on these numbers included searches by
N. G. W. H. Beeger and
Emma Lehmer,
[3] [4] but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem.
[5] [6] If any others exist, they must be greater than 2 × 10
13.
[7] It has been
conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval
is about
.
[8] Several computer searches have been done in the hope of finding new Wilson primes.[9] [10] [11] The Ibercivis distributed computing project includes a search for Wilson primes.[12] Another search was coordinated at the Great Internet Mersenne Prime Search forum.[13]
Generalizations
Wilson primes of order
Wilson's theorem can be expressed in general as
(n-1)!(p-n)!\equiv(-1)n \bmodp
for every
integer
and prime
. Generalized Wilson primes of order are the primes such that
divides
.
It was conjectured that for every natural number, there are infinitely many Wilson primes of order .
The smallest generalized Wilson primes of order
are:
Near-Wilson primes
| |
---|
1282279 | +20 |
1306817 | −30 |
1308491 | −55 |
1433813 | −32 |
1638347 | −45 |
1640147 | −88 |
1647931 | +14 |
1666403 | +99 |
1750901 | +34 |
1851953 | −50 |
2031053 | −18 |
2278343 | +21 |
2313083 | +15 |
2695933 | −73 |
3640753 | +69 |
3677071 | −32 |
3764437 | −99 |
3958621 | +75 |
5062469 | +39 |
5063803 | +40 |
6331519 | +91 |
6706067 | +45 |
7392257 | +40 |
8315831 | +3 |
8871167 | −85 |
9278443 | −75 |
9615329 | +27 |
9756727 | +23 |
10746881 | −7 |
11465149 | −62 |
11512541 | −26 |
11892977 | −7 |
12632117 | −27 |
12893203 | −53 |
14296621 | +2 |
16711069 | +95 |
16738091 | +58 |
17879887 | +63 |
19344553 | −93 |
19365641 | +75 |
20951477 | +25 |
20972977 | +58 |
21561013 | −90 |
23818681 | +23 |
27783521 | −51 |
27812887 | +21 |
29085907 | +9 |
29327513 | +13 |
30959321 | +24 |
33187157 | +60 |
33968041 | +12 |
39198017 | −7 |
45920923 | −63 |
51802061 | +4 |
53188379 | −54 |
56151923 | −1 |
57526411 | −66 |
64197799 | +13 |
72818227 | −27 |
87467099 | −2 |
91926437 | −32 |
92191909 | +94 |
93445061 | −30 |
93559087 | −3 |
94510219 | −69 |
101710369 | −70 |
111310567 | +22 |
117385529 | −43 |
176779259 | +56 |
212911781 | −92 |
216331463 | −36 |
253512533 | +25 |
282361201 | +24 |
327357841 | −62 |
411237857 | −84 |
479163953 | −50 |
757362197 | −28 |
824846833 | +60 |
866006431 | −81 |
1227886151 | −51 |
1527857939 | −19 |
1636804231 | +64 |
1686290297 | +18 |
1767839071 | +8 |
1913042311 | −65 |
1987272877 | +5 |
2100839597 | −34 |
2312420701 | −78 |
2476913683 | +94 |
3542985241 | −74 |
4036677373 | −5 |
4271431471 | +83 |
4296847931 | +41 |
5087988391 | +51 |
5127702389 | +50 |
7973760941 | +76 |
9965682053 | −18 |
10242692519 | −97 |
11355061259 | −45 |
11774118061 | −1 |
12896325149 | +86 |
13286279999 | +52 |
20042556601 | +27 |
21950810731 | +93 |
23607097193 | +97 |
24664241321 | +46 |
28737804211 | −58 |
35525054743 | +26 |
41659815553 | +55 |
42647052491 | +10 |
44034466379 | +39 |
60373446719 | −48 |
64643245189 | −21 |
66966581777 | +91 |
67133912011 | +9 |
80248324571 | +46 |
80908082573 | −20 |
100660783343 | +87 |
112825721339 | +70 |
231939720421 | +41 |
258818504023 | +4 |
260584487287 | −52 |
265784418461 | −78 |
298114694431 | +82 |
|
A prime
satisfying the
congruence (p-1)!\equiv-1+Bp (\operatorname{mod}{p2})
with small
can be called a
near-Wilson prime. Near-Wilson primes with
are bona fide Wilson primes. The table on the right lists all such primes with
from up to 4.
[7] Wilson numbers
A Wilson number is a natural number
such that
W(n)\equiv0 (\operatorname{mod}{n2})
, where
and where the
term is positive
if and only if
has a
primitive root and negative otherwise.
[14] For every natural number
,
is divisible by
, and the quotients (called generalized
Wilson quotients) are listed in . The Wilson numbers are
If a Wilson number
is prime, then
is a Wilson prime. There are 13 Wilson numbers up to 5.
[15] See also
Further reading
External links
Notes and References
- Edward Waring, Meditationes Algebraicae (Cambridge, England: 1770), page 218 (in Latin). In the third (1782) edition of Waring's Meditationes Algebraicae, Wilson's theorem appears as problem 5 on page 380. On that page, Waring states: "Hanc maxime elegantem primorum numerorum proprietatem invenit vir clarissimus, rerumque mathematicarum peritissimus Joannes Wilson Armiger." (A man most illustrious and most skilled in mathematics, Squire John Wilson, found this most elegant property of prime numbers.)
- Book: Mathews, George Ballard. Example 15. 318. Theory of Numbers, Part 1. George Ballard Mathews. 1892. Deighton & Bell.
- 10.2307/1968791 . Lehmer . Emma . Emma Lehmer . On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson . . 39 . 2 . 350–360 . April 1938 . 8 March 2011. 1968791 .
- N. G. W. H. . Beeger . N. G. W. H. Beeger . Quelques remarques sur les congruences
rp-1\equiv1 (\operatorname{mod}{p2})
et (p-1)!\equiv-1 (\operatorname{mod}{p2})
. . 43 . 72–84 . 1913–1914.
- Wall . D. D. . Donald Dines Wall . October 1952 . 10.2307/2002270 . 40 . Mathematical Tables and Other Aids to Computation . 2002270 . 238 . Unpublished mathematical tables . 6.
- Karl . Goldberg . A table of Wilson quotients and the third Wilson prime . J. London Math. Soc.. 28 . 2 . 252–256 . 1953 . 10.1112/jlms/s1-28.2.252 .
- Costa . Edgar . Gerbicz . Robert . Harvey . David . 1209.3436 . 10.1090/S0025-5718-2014-02800-7 . 290 . Mathematics of Computation . 3246824 . 3071–3091 . A search for Wilson primes . 83 . 2014. 6738476 .
- http://primes.utm.edu/glossary/page.php?sort=WilsonPrime The Prime Glossary: Wilson prime
- Web site: McIntosh . R. . Richard McIntosh . WILSON STATUS (Feb. 1999) . . 9 March 2004 . 6 June 2011.
- Richard E. . Crandall . Karl . Dilcher . Carl . Pomerance . A search for Wieferich and Wilson primes . Math. Comput. . 66 . 217 . 433–449 . 1997 . 10.1090/S0025-5718-97-00791-6 . 1997MaCom..66..433C . free . See p. 443.
- Book: Ribenboim . P. . Paulo Ribenboim . Keller . W. . Die Welt der Primzahlen: Geheimnisse und Rekorde . Springer . 2006 . Berlin Heidelberg New York . 241 . de . 978-3-540-34283-0.
- Web site: Ibercivis site . 2011-03-10 . 2012-06-20 . https://web.archive.org/web/20120620210249/http://www.ibercivis.net/index.php?module=public§ion=channels&action=view&id_channel=2&id_subchannel=138 . dead .
- http://www.mersenneforum.org/showthread.php?t=16028 Distributed search for Wilson primes
- see Gauss's generalization of Wilson's theorem
- 10.1090/S0025-5718-98-00951-X . Takashi . Agoh . Karl . Dilcher . Ladislav . Skula . Ladislav Skula. Wilson quotients for composite moduli . Math. Comput. . 67 . 222 . 843–861 . 1998 . 1998MaCom..67..843A . free .