Williams spray equation explained
In combustion, the Williams spray equation, also known as the Williams–Boltzmann equation, describes the statistical evolution of sprays contained in another fluid, analogous to the Boltzmann equation for the molecules, named after Forman A. Williams, who derived the equation in 1958.[1] [2]
Mathematical description[3]
The sprays are assumed to be spherical with radius
, even though the assumption is valid for solid particles(liquid droplets) when their shape has no consequence on the combustion. For liquid droplets to be nearly spherical, the spray has to be dilute(total volume occupied by the sprays is much less than the volume of the gas) and the
Weber number
, where
is the gas density,
is the spray droplet velocity,
is the gas velocity and
is the surface tension of the liquid spray, should be
.
The equation is described by a number density function
, which represents the probable number of spray particles (droplets) of chemical species
(of
total species), that one can find with radii between
and
, located in the spatial range between
and
, traveling with a velocity in between
and
, having the temperature in between
and
at time
. Then the spray equation for the evolution of this density function is given by
+\nablax ⋅ (vfj)+\nablav ⋅ (Fjfj)=-
(Rjfj)-
(Ejfj)+Qj+\Gammaj, j=1,2,\ldots,M.
where
is the force per unit mass acting on the
species spray (acceleration applied to the sprays),
is the rate of change of the size of the
species spray,
is the rate of change of the temperature of the
species spray due to heat transfer,
[4]
is the rate of change of
number density function of
species spray due to nucleation, liquid breakup etc.,
is the rate of change of number density function of
species spray due to collision with other spray particles.
A simplified model for liquid propellant rocket
This model for the rocket motor was developed by Probert,[5] Williams[6] and Tanasawa.[7] [8] It is reasonable to neglect
, for distances not very close to the spray atomizer, where major portion of combustion occurs. Consider a one-dimensional liquid-propellent rocket motor situated at
, where fuel is sprayed. Neglecting
(density function is defined without the temperature so accordingly dimensions of
changes) and due to the fact that the mean flow is parallel to
axis, the steady spray equation reduces to
where
is the velocity in
direction. Integrating with respect to the velocity results
\left(\intRjfjduj\right)+
\left(\intujfjduj\right)+[Fjfj]
=0
The contribution from the last term (spray acceleration term) becomes zero (using Divergence theorem) since
when
is very large, which is typically the case in rocket motors. The drop size rate
is well modeled using vaporization mechanisms as
Rj=-
, \chij\geq0, 0\leqkj\leq1
where
is independent of
, but can depend on the surrounding gas. Defining the number of droplets per unit volume per unit radius and average quantities averaged over velocities,
Gj=\intfjduj, \bar{R}j=
, \bar{u}j=
the equation becomes
(\bar{R}jGj)+
(\bar{u}jGj)=0.
If further assumed that
is independent of
, and with a transformed coordinate
If the combustion chamber has varying cross-section area
, a known function for
and with area
at the spraying location, then the solution is given by
} \left(\frac\right)^.
where
Gj,0=Gj(r,0), \bar{u}j,0=\bar{u}j(x=0)
are the number distribution and mean velocity at
respectively.
See also
Notes and References
- Williams . F. A. . Spray Combustion and Atomization . Physics of Fluids . AIP Publishing . 1 . 6 . 1958 . 0031-9171 . 10.1063/1.1724379 . 541. 1958PhFl....1..541W .
- Williams . F.A. . Progress in spray-combustion analysis . Symposium (International) on Combustion . Elsevier BV . 8 . 1 . 1961 . 0082-0784 . 10.1016/s0082-0784(06)80487-x . 50–69.
- Book: Williams, F. A. . Combustion theory : the fundamental theory of chemically reacting flow systems . Addison/Wesley Pub. Co . Redwood City, Calif . 1985 . 978-0-201-40777-8 . 26785266 .
- Emre . O. . Kah . D. . Jay . Stephane . Tran . Q.-H. . Velghe . A. . de Chaisemartin . S. . Fox . R. O. . Laurent . F. . Massot . M. . Eulerian Moment Methods for Automotive Sprays . Atomization and Sprays . Begell House . 25 . 3 . 2015 . 1044-5110 . 10.1615/atomizspr.2015011204 . 189–254.
- Probert . R.P. . XV. The influence of spray particle size and distribution in the combustion of oil droplets . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Informa UK Limited . 37 . 265 . 1946 . 1941-5982 . 10.1080/14786444608561330 . 94–105.
- Williams, F. A. "Introduction to Analytical Models of High Frequency Combustion Instability,”." Eighth Symposium (International) on Combustion. Williams and Wilkins. 1962.
- Tanasawa, Y. "On the Combustion Rate of a Group of Fuel Particles Injected Through a Swirl Nozzle." Technology Reports of Tohoku University 18 (1954): 195–208.
- TANASAWA . Yasusi . TESIMA . Tuneo . On the Theory of Combustion Rate of Liquid Fuel Spray . Bulletin of JSME . 1 . 1 . 1958 . 1881-1426 . 10.1299/jsme1958.1.36 . 36–41. free.