The Willam–Warnke yield criterion [1] is a function that is used to predict when failure will occur in concrete and other cohesive-frictional materials such as rock, soil, and ceramics. This yield criterion has the functional form
f(I1,J2,J3)=0
I1
J2,J3
\sigmac
\sigmat
\sigmab
In terms of
I1,J2,J3
f:=\sqrt{J2}+λ(J2,J3)~(\tfrac{I1}{3}-B)=0
λ
J2,J3
B
λ
\theta
B
In the original paper, the three-parameter Willam-Warnke yield function was expressed as
f=\cfrac{1}{3z}~\cfrac{I1}{\sigmac}+\sqrt{\cfrac{2}{5}}~\cfrac{1}{r(\theta)}\cfrac{\sqrt{J2}}{\sigmac}-1\le0
I1
J2
\sigmac
\theta
\theta=\tfrac{1}{3}\cos-1\left(\cfrac{3\sqrt{3}}{2}~\cfrac{J3}{J
3/2 | |
2 |
r(\theta)
r(\theta):=\cfrac{u(\theta)+v(\theta)}{w(\theta)}
\begin{align} u(\theta):=&2~rc~(r
2)~\cos\theta | |
t |
\\ v(\theta):=&rc~(2~rt-rc)\sqrt{4~(r
2 | |
c |
-
2)~\cos | |
r | |
t |
2\theta+
2 | |
5~r | |
t |
-4~rt~rc}\\ w(\theta):=&
2 | |
4(r | |
c |
-
2)\cos | |
r | |
t |
2\theta+(rc-2~r
2 | |
t) |
\end{align}
The quantities
rt
rc
\theta=0\circ,60\circ
\sigmac,\sigmab,\sigmat
\sigmab
\sigmat
rc:=\sqrt{\cfrac{6}{5}}\left[\cfrac{\sigmab\sigmat}{3\sigmab\sigmat+\sigmac(\sigmab-\sigmat)}\right]~;~~ rt:=\sqrt{\cfrac{6}{5}}\left[\cfrac{\sigmab\sigmat}{\sigmac(2\sigmab+\sigmat)}\right]
z
z:=\cfrac{\sigmab\sigmat}{\sigmac(\sigmab-\sigmat)}~.
The Haigh-Westergaard representation of the Willam-Warnke yield condition can bewritten as
f(\xi,\rho,\theta)=0 \equiv f:=\bar{λ}(\theta)~\rho+\bar{B}~\xi-\sigmac\le0
\bar{B}:=\cfrac{1}{\sqrt{3}~z}~;~~\bar{λ}:=\cfrac{1}{\sqrt{5}~r(\theta)}~.
An alternative form of the Willam-Warnke yield criterion in Haigh-Westergaard coordinates is the Ulm-Coussy-Bazant form:[2]
f(\xi,\rho,\theta)=0 or f:=\rho+\bar{λ}(\theta)~\left(\xi-\bar{B}\right)=0
\bar{λ}:=\sqrt{\tfrac{2}{3}}~\cfrac{u(\theta)+v(\theta)}{w(\theta)}~;~~ \bar{B}:=\tfrac{1}{\sqrt{3}}~\left[\cfrac{\sigmab\sigmat}{\sigmab-\sigmat}\right]
\begin{align} rt:=&\cfrac{\sqrt{3}~(\sigmab-\sigmat)}{2\sigmab-\sigmat}\\ rc:=&\cfrac{\sqrt{3}~\sigmac~(\sigmab-\sigmat)}{(\sigmac+\sigmat)\sigmab-\sigmac\sigmat} \end{align}
rc,rt
2~rt\gerc\gert/2
0\le\theta\le\cfrac{\pi}{3}