The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter stands for Darstellung, which means "representation" in German.
Let be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as angular momentum. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor.
In all cases, the three operators satisfy the following commutation relations,
[Jx,Jy]=iJz, [Jz,Jx]=iJy, [Jy,Jz]=iJx,
J2=
2 | |
J | |
x |
+
2 | |
J | |
y |
+
2 | |
J | |
z |
This defines the spherical basis used here. That is, there is a complete set of kets (i.e. orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues) with
J2|jm\rangle=j(j+1)|jm\rangle, Jz|jm\rangle=m|jm\rangle,
A 3-dimensional rotation operator can be written as
l{R}(\alpha,\beta,\gamma)=
-i\alphaJz | |
e |
-i\betaJy | |
e |
-i\gammaJz | |
e |
,
The Wigner D-matrix is a unitary square matrix of dimension 2j + 1 in this spherical basis with elements
j | |
D | |
m'm |
(\alpha,\beta,\gamma)\equiv\langlejm'|l{R}(\alpha,\beta,\gamma)|jm\rangle=e-im'\alpha
j | |
d | |
m'm |
(\beta)e-i,
j | |
d | |
m'm |
(\beta)=\langlejm'
-i\betaJy | |
|e |
|jm\rangle=
j | |
D | |
m'm |
(0,\beta,0)
That is, in this basis,
j | |
D | |
m'm |
(\alpha,0,0)=e-im'\alpha\deltam'm
Wigner gave the following expression:[1]
j | |
d | |
m'm |
(\beta)
| ||||
=[(j+m')!(j-m')!(j+m)!(j-m)!] |
smax | ||
\sum | \left[ | |
s=smin |
| |||||||||||||
(j+m-s)!s!(m'-m+s)!(j-m'-s)! |
\right].
The sum over s is over such values that the factorials are nonnegative, i.e.
smin=max(0,m-m')
smax=min(j+m,j-m')
Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor
(-1)m'-m+s
(-1)sim-m',
(a,b) | |
P | |
k(\cos\beta) |
a
b.
k=min(j+m,j-m,j+m',j-m').
If
k=\begin{cases} j+m:&a=m'-m; λ=m'-m\\ j-m:&a=m-m'; λ=0\\ j+m':&a=m-m'; λ=0\\ j-m':&a=m'-m; λ=m'-m\\ \end{cases}
Then, with
b=2j-2k-a,
j | |
d | |
m'm |
(\beta)=(-1)λ
| ||||
\binom{2j-k}{k+a} |
| |||||
\binom{k+b}{b} | \left(\sin |
\beta | |
2 |
\right)a\left(\cos
\beta | |
2 |
\right)b
(a,b) | |
P | |
k(\cos\beta), |
a,b\ge0.
It is also useful to consider the relations
a=|m'-m|,b=|m'+m|,λ=
m-m'-|m-m'| | |
2 |
,k=j-M
M=max(|m|,|m'|)
N=min(|m|,|m'|)
j | |
d | |
m'm |
(\beta)
| ||||
=(-1) |
\left[
(j+M)!(j-M)! | |
(j+N)!(j-N)! |
| |||||
\right] | \left(\sin |
\beta | |
2 |
\right)|m-m'|\left(\cos
\beta | |
2 |
\right)|m+m'|
(|m-m'|,|m+m'|) | |
P | |
j-M |
(\cos\beta).
The complex conjugate of the D-matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with
(x,y,z)=(1,2,3),
\begin{align} \hat{l{J}}1&=i\left(\cos\alpha\cot\beta
\partial | |
\partial\alpha |
+\sin\alpha{\partial\over\partial\beta}-{\cos\alpha\over\sin\beta}{\partial\over\partial\gamma}\right)\\ \hat{l{J}}2&=i\left(\sin\alpha\cot\beta{\partial\over\partial\alpha}-\cos\alpha{\partial\over\partial\beta}-{\sin\alpha\over\sin\beta}{\partial\over\partial\gamma}\right)\\ \hat{l{J}}3&=-i{\partial\over\partial\alpha} \end{align}
Further,
\begin{align} \hat{l{P}}1&=i\left({\cos\gamma\over\sin\beta}{\partial\over\partial\alpha}-\sin\gamma{\partial\over\partial\beta}-\cot\beta\cos\gamma{\partial\over\partial\gamma}\right)\\ \hat{l{P}}2&=i\left(-{\sin\gamma\over\sin\beta}{\partial\over\partial\alpha}-\cos\gamma {\partial\over\partial\beta}+\cot\beta\sin\gamma{\partial\over\partial\gamma}\right)\\ \hat{l{P}}3&=-i{\partial\over\partial\gamma},\\ \end{align}
The operators satisfy the commutation relations
\left[l{J}1,l{J}2\right]=il{J}3, \hbox{and} \left[l{P}1,l{P}2\right]=-il{P}3,
l{P}i
\left[l{P}i,l{J}j\right]=0, i,j=1,2,3,
l{J}2\equiv
2+ | |
l{J} | |
1 |
2 | |
l{J} | |
2 |
+
2 | |
l{J} | |
3 |
=l{P}2\equiv
2+ | |
l{P} | |
1 |
2 | |
l{P} | |
2 |
+
2. | |
l{P} | |
3 |
Their explicit form is,
l{J}2=l{P}2=-
1 | |
\sin2\beta |
\left(
\partial2 | + | |
\partial\alpha2 |
\partial2 | -2\cos\beta | |
\partial\gamma2 |
\partial2 | \right)- | |
\partial\alpha\partial\gamma |
\partial2 | -\cot\beta | |
\partial\beta2 |
\partial | |
\partial\beta |
.
The operators
l{J}i
\begin{align} l{J}3
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*&=m'
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*\\ (l{J}1\pmil{J}2)
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*&=\sqrt{j(j+1)-m'(m'\pm1)}
j | |
D | |
m'\pm1,m |
(\alpha,\beta,\gamma)*\end{align}
The operators
l{P}i
l{P}3
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*=m
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*,
(l{P}1\mpil{P}2)
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*=\sqrt{j(j+1)-m(m\pm1)}
j | |
D | |
m',m\pm1 |
(\alpha,\beta,\gamma)*.
Finally,
l{J}2
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*=l{P}2
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*=j(j+1)
j | |
D | |
m'm |
(\alpha,\beta,\gamma)*.
In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span irreducible representations of the isomorphic Lie algebras generated by
\{l{J}i\}
\{-l{P}i\}
An important property of the Wigner D-matrix follows from the commutation of
l{R}(\alpha,\beta,\gamma)
\langlejm'|l{R}(\alpha,\beta,\gamma)|jm\rangle=\langlejm'|Tl{R}(\alpha,\beta,\gamma)T|jm\rangle=(-1)m'-m\langlej,-m'|l{R}(\alpha,\beta,\gamma)|j,-m\rangle*,
j | |
D | |
m'm |
(\alpha,\beta,\gamma)=(-1)m'-m
j | |
D | |
-m',-m |
(\alpha,\beta,\gamma)*.
T
T\dagger
T|jm\rangle=(-1)j-m|j,-m\rangle
(-1)2j-m'-m=(-1)m'-m
A further symmetry implies
(-1)m'-m
j | |
D | |
mm' |
j | |
(\alpha,\beta,\gamma)=D | |
m'm |
(\gamma,\beta,\alpha)~.
The Wigner D-matrix elements
j | |
D | |
mk |
(\alpha,\beta,\gamma)
\alpha,\beta,
\gamma
2\pi | |
\int | |
0 |
d\alpha
\pi | |
\int | |
0 |
d\beta\sin\beta
2\pi | |
\int | |
0 |
d\gamma
j' | |
D | |
m'k' |
(\alpha,\beta,\gamma)\ast
j | |
D | |
mk |
(\alpha,\beta,\gamma)=
8\pi2 | |
2j+1 |
\deltam'm\deltak'k\deltaj'j.
This is a special case of the Schur orthogonality relations.
Crucially, by the Peter–Weyl theorem, they further form a complete set.
The fact that
j | |
D | |
mk |
(\alpha,\beta,\gamma)
|lm\rangle
l{R}(\alpha,\beta,\gamma)|lm\rangle
\sumk
j | |
D | |
m'k |
(\alpha,\beta,\gamma)*
j | |
D | |
mk |
(\alpha,\beta,\gamma)=\deltam,m',
\sumk
j | |
D | |
km' |
(\alpha,\beta,\gamma)*
j | |
D | |
km |
(\alpha,\beta,\gamma)=\deltam,m'.
The group characters for SU(2) only depend on the rotation angle β, being class functions, so, then, independent of the axes of rotation,
\chij(\beta)\equiv\summ
j | |
D | |
mm |
(\beta)=\summ
j | |
d | |
mm |
(\beta)=
| ||||||
|
,
and consequently satisfy simpler orthogonality relations, through the Haar measure of the group,[4]
1 | |
\pi |
\int
2\pi | |
0 |
d\beta\sin2\left(
\beta | |
2 |
\right)\chij(\beta)\chij'(\beta)=\deltaj'j.
The completeness relation (worked out in the same reference, (3.95)) is
\sumj\chij(\beta)\chij(\beta')=\delta(\beta-\beta'),
\beta'=0,
\sumj\chij(\beta)(2j+1)=\delta(\beta).
The set of Kronecker product matrices
Dj(\alpha,\beta,\gamma) ⊗ Dj'(\alpha,\beta,\gamma)
j | |
D | |
mk |
(\alpha,\beta,\gamma)
j' | |
D | |
m'k' |
(\alpha,\beta,\gamma)=
j+j' | |
\sum | |
J=|j-j'| |
\langlejmj'm'|J\left(m+m'\right)\rangle \langlejkj'k'|J\left(k+k'\right)\rangle
J | |
D | |
\left(m+m'\right)\left(k+k'\right) |
(\alpha,\beta,\gamma)
\langlej1m1j2m2|j3m3\rangle
For integer values of
l
\ell | |
D | |
m0 |
(\alpha,\beta,\gamma)=\sqrt{
4\pi | |
2\ell+1 |
\ell | |
d | |
m0 |
(\beta)=\sqrt{
(\ell-m)! | |
(\ell+m)! |
A rotation of spherical harmonics
\langle\theta,\phi|\ellm'\rangle
\ell | |
\sum | |
m'=-\ell |
m' | |
Y | |
\ell |
(\theta,\phi)~
\ell | |
D | |
m'~m |
(\alpha,\beta,\gamma).
When both indices are set to zero, the Wigner D-matrix elements are given by ordinary Legendre polynomials:
\ell | |
D | |
0,0 |
(\alpha,\beta,\gamma)=
\ell | |
d | |
0,0 |
(\beta)=P\ell(\cos\beta).
In the present convention of Euler angles,
\alpha
\beta
\left(
m | |
Y | |
\ell |
\right)*=(-1)m
-m | |
Y | |
\ell |
.
\ell | |
D | |
ms |
(\alpha,\beta,-\gamma)=(-1)s\sqrt
4\pi | |
2{\ell |
+1}{}sY
m(\beta,\alpha) | |
\ell |
eis\gamma.
The absolute square of an element of the D-matrix,
Fmm'(\beta)=|
j | |
D | |
mm' |
(\alpha,\beta,\gamma)|2,
j
m
m'
\beta
Fmm'
\beta
Remarkably, the eigenvalue problem for the
F
j | |
\sum | |
m'=-j |
Fmm'(\beta)
j | |
f | |
\ell |
(m')=P\ell(\cos\beta)
j | |
f | |
\ell |
(m) (\ell=0,1,\ldots,2j).
Here, the eigenvector,
j | |
f | |
\ell |
(m)
P\ell(\cos\beta)
In the limit when
\ell\ggm,m\prime
\ell | |
D | |
mm' |
(\alpha,\beta,\gamma) ≈ e-im\alpha-im'\gammaJm-m'(\ell\beta)
Jm-m'(\ell\beta)
\ell\beta
Using sign convention of Wigner, et al. the d-matrix elements
j | |
d | |
m'm |
(\theta)
For j = 1/2
| ||||||||
\begin{align} d | ||||||||
|
&=\cos
\theta | |
2 |
| ||||||||
\\[6pt] d | ||||||||
|
&=-\sin
\theta | |
2 |
\end{align}
For j = 1
1 | |
\begin{align} d | |
1,1 |
&=
1 | |
2 |
(1+\cos\theta)
1 | |
\\[6pt] d | |
1,0 |
&=-
1 | |
\sqrt{2 |
For j = 3/2
| ||||||||
\begin{align} d | ||||||||
|
&=
1 | |
2 |
(1+\cos\theta)\cos
\theta | |
2 |
| ||||||||
\\[6pt] d | ||||||||
|
&=-
\sqrt{3 | |
For j = 2[8]
2 | |
\begin{align} d | |
2,2 |
&=
1 | |
4 |
\left(1+\cos\theta\right)2
2 | |
\\[6pt] d | |
2,1 |
&=-
1 | |
2 |
\sin\theta\left(1+\cos\theta\right)
2 | |
\\[6pt] d | |
2,0 |
&=\sqrt{
3 | |
8 |
Wigner d-matrix elements with swapped lower indices are found with the relation:
j | |
d | |
m',m |
=(-1)m-m'
j | |
d | |
m,m' |
=
j. | |
d | |
-m,-m' |
j | |
\begin{align} d | |
m',m |
(\pi)&=(-1)j-m\deltam',-m
j | |
\\[6pt] d | |
m',m |
(\pi-\beta)&=(-1)j+m'
j | |
d | |
m',-m |
j | |
(\beta)\\[6pt] d | |
m',m |
(\pi+\beta)&=(-1)j-m
j | |
d | |
m',-m |
j | |
(\beta)\\[6pt] d | |
m',m |
(2\pi+\beta)&=(-1)2j
j | |
d | |
m',m |
j | |
(\beta)\\[6pt] d | |
m',m |
(-\beta)&=
j | |
d | |
m,m' |
(\beta)=(-1)m'-m
j | |
d | |
m',m |
(\beta) \end{align}