In mathematics, Wiener's lemma is a well-known identity which relates the asymptotic behaviour of the Fourier coefficients of a Borel measure on the circle to its atomic part. This result admits an analogous statement for measures on the real line. It was first discovered by Norbert Wiener.
\mu
T
\mua=\sumjcj\delta
zj |
\mu(\{zj\})=cj ≠ 0
\mu(\{z\})=0
z\not\in\{zj\}
\limN\toinfty
1 | |
2N+1 |
N|\widehat\mu(n)| | |
\sum | |
n=-N |
2=\sum | |
j|c |
2, | |
j| |
\widehat{\mu}(n)=\intTz-nd\mu(z)
n
\mu
\mu
R
\mua=\sumjcj\delta
xj |
\limR\toinfty
1 | |
2R |
R|\widehat\mu(\xi)| | |
\int | |
-R |
2d\xi=\sum | |
j|c |
2, | |
j| |
\widehat{\mu}(\xi)=\intRe-2\pid\mu(x)
\mu
\nu
1 | |
2N+1 |
N\widehat{\nu}(n)=\int | |
\sum | |
T |
fN(z)d\nu(z),
f | ||||
|
N | |
\sum | |
n=-N |
z-n
fN
1
fN(1)=1
f | ||||
|
z\inT\setminus\{1\}
0
N\toinfty
\limN\toinfty
1 | |
2N+1 |
N\widehat{\nu}(n)=\int | |
\sum | |
T |
1\{1\
\mu'
\overline\mu
T
\mu'(B)=\overline{\mu(B-1)}
B\subseteqT
\widehat{\mu'}(n)=\overline{\widehat{\mu}(n)}
\mu
\mu'
\nu=\mu*\mu'
\nu
\mu x \mu'
T x T
⋅ :T x T\toT
\widehat{\nu}(n)=\intT x T(zw)-nd(\mu x \mu')(z,w) =\intT\intTz-nw-nd\mu'(w)d\mu(z)=\widehat{\mu}(n)\widehat{\mu'}(n)=|\widehat{\mu}(n)|2.
\limN\toinfty
1 | |
2N+1 |
N|\widehat{\mu}(n)| | |
\sum | |
n=-N |
2=\nu(\{1\})=\int | |
T x T |
1\{zw=1\
\intT\mu'(\{z-1\})d\mu(z)=\intT\overline{\mu(\{z\})}d\mu(z)=\sumj|\mu(\{z
2=\sum | |
j|c |
2. | |
j| |
1 | |
2R |
R\widehat\nu(\xi)d\xi=\int | |
\int | |
R |
fR(x)d\nu(x)
f | ||||
|
R | |
\int | |
-R |
e-2\pid\xi
|fR|\le1
fR(0)=1
f | ||||
|
x ≠ 0
0
R\toinfty
\limR\toinfty
1 | |
2R |
R\widehat\nu(\xi)d\xi=\nu(\{0\}). | |
\int | |
-R |
\mu
\mua=0
\limN\toinfty
1 | |
2N+1 |
N|\widehat\mu(n)| | |
\sum | |
n=-N |
2=0
\mu
\limN\toinfty
1 | |
2N+1 |
N|\widehat\mu(n)| | |
\sum | |
n=-N |
2=1
cj
1=\sumj
2\le\sum | |
c | |
j |
cj\le1
2=c | |
c | |
j |
cj=1
1