Whittaker function explained
In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the confluent hypergeometric equation introduced by to make the formulas involving the solutions more symmetric. More generally, introduced Whittaker functions of reductive groups over local fields, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2(R).
Whittaker's equation is
It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the
Whittaker functions Mκ,μ(
z),
Wκ,μ(
z), defined in terms of Kummer's
confluent hypergeometric functions M and
U by
M\kappa,\mu\left(z\right)=\exp\left(-z/2\right)z\mu+\tfrac{1{2}}M\left(\mu-\kappa+\tfrac{1}{2},1+2\mu,z\right)
W\kappa,\mu\left(z\right)=\exp\left(-z/2\right)z\mu+\tfrac{1{2}}U\left(\mu-\kappa+\tfrac{1}{2},1+2\mu,z\right).
The Whittaker function
is the same as those with opposite values of, in other words considered as a function of at fixed and it is even functions. When and are real, the functions give real values for real and imaginary values of . These functions of play a role in so-called Kummer spaces.
[1] Whittaker functions appear as coefficients of certain representations of the group SL2(R), called Whittaker models.
References
Further reading
- Hatamzadeh-Varmazyar. Saeed. Masouri. Zahra. 2012-11-01. A fast numerical method for analysis of one- and two-dimensional electromagnetic scattering using a set of cardinal functions. Engineering Analysis with Boundary Elements. en. 36. 11. 1631–1639. 10.1016/j.enganabound.2012.04.014. 0955-7997.
- Gerasimov. A. A.. Lebedev. Dmitrii R.. Oblezin. Sergei V.. 2012. New integral representations of Whittaker functions for classical Lie groups. Russian Mathematical Surveys. en. 67. 1. 1–92. 10.1070/RM2012v067n01ABEH004776. 0705.2886. 2012RuMaS..67....1G. 0036-0279.
- Baudoin. Fabrice. O'Connell. Neil. 2011. Exponential functionals of brownian motion and class-one Whittaker functions. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. en. 47. 4. 1096–1120. 10.1214/10-AIHP401. 2011AIHPB..47.1096B. 113388. free. 0809.2506.
- McKee. Mark. April 2009. An Infinite Order Whittaker Function. Canadian Journal of Mathematics. en. 61. 2. 373–381. 10.4153/CJM-2009-019-x. 55587239. 0008-414X. free.
- Mathai. A. M.. Pederzoli. Giorgio. 1997-03-01. Some properties of matrix-variate Laplace transforms and matrix-variate Whittaker functions. Linear Algebra and Its Applications. en. 253. 1. 209–226. 10.1016/0024-3795(95)00705-9. 0024-3795. free.
- Whittaker. J. M.. May 1927. On the Cardinal Function of Interpolation Theory. Proceedings of the Edinburgh Mathematical Society. en. 1. 1. 41–46. 10.1017/S0013091500007318. 1464-3839. free.
- Cherednik. Ivan. 2009. Whittaker Limits of Difference Spherical Functions. International Mathematics Research Notices. 2009. 20. 3793–3842. 10.1093/imrn/rnp065. 0807.2155. 6253357. 1687-0247.
- Slater. L. J.. October 1954. Expansions of generalized Whittaker functions. Mathematical Proceedings of the Cambridge Philosophical Society. en. 50. 4. 628–631. 10.1017/S0305004100029765. 1954PCPS...50..628S. 122348447 . 1469-8064.
- Etingof. Pavel. 1999-01-12. Whittaker functions on quantum groups and q-deformed Toda operators. math/9901053.
- McNamara. Peter J.. 2011-01-15. Metaplectic Whittaker functions and crystal bases. Duke Mathematical Journal. EN. 156. 1. 1–31. 10.1215/00127094-2010-064. 0907.2675. 979197. 0012-7094.
- Mathai. A. M.. Pederzoli. Giorgio. 1998-01-15. A whittaker function of matrix argument. Linear Algebra and Its Applications. en. 269. 1. 91–103. 10.1016/S0024-3795(97)00059-1. 0024-3795. free.
- Frenkel. E.. Gaitsgory. D.. Kazhdan. D.. Vilonen. K.. 1998. Geometric realization of Whittaker functions and the Langlands conjecture. Journal of the American Mathematical Society. en. 11. 2. 451–484. 10.1090/S0894-0347-98-00260-4. 13221400. 0894-0347. free. alg-geom/9703022.
Notes and References
- Book: Hilbert spaces of entire functions. registration. Prentice-Hall. Louis de Branges. Louis de Branges. B0006BUXNM. 1968. Sections 55-57.