See also Wigner–Weyl transform, for another definition of the Weyl transform.
In theoretical physics, the Weyl transformation, named after Hermann Weyl, is a local rescaling of the metric tensor:
gab → e-2\omega(x)gab
which produces another metric in the same conformal class. A theory or an expression invariant under this transformation is called conformally invariant, or is said to possess Weyl invariance or Weyl symmetry. The Weyl symmetry is an important symmetry in conformal field theory. It is, for example, a symmetry of the Polyakov action. When quantum mechanical effects break the conformal invariance of a theory, it is said to exhibit a conformal anomaly or Weyl anomaly.
The ordinary Levi-Civita connection and associated spin connections are not invariant under Weyl transformations. Weyl connections are a class of affine connections that is invariant, although no Weyl connection is individual invariant under Weyl transformations.
A quantity
\varphi
k
\varphi\to\varphiek.
Thus conformally weighted quantities belong to certain density bundles; see also conformal dimension. Let
A\mu
g
\partial\mu\omega
B\mu=A\mu+\partial\mu\omega.
Then
D\mu\varphi\equiv\partial\mu\varphi+kB\mu\varphi
k-1
For the transformation
gab=f(\phi(x))\bar{g}ab
\begin{align} gab&=
1 | |
f(\phi(x)) |
\bar{g}ab\\ \sqrt{-g}&=\sqrt{-\bar{g}}fD/2\\
c | |
\Gamma | |
ab |
&=
c | |
\bar{\Gamma} | |
ab |
+
f' | |
2f |
c | |
\left(\delta | |
b |
\partiala\phi+
c | |
\delta | |
a |
\partialb\phi-\bar{g}ab\partialc\phi\right)\equiv
c | |
\bar{\Gamma} | |
ab |
+
c | |
\gamma | |
ab |
\\ Rab&=\bar{R}ab+
f''f-f\prime | |
2f2 |
\left((2-D)\partiala\phi\partialb\phi-\bar{g}ab\partialc\phi\partialc\phi\right)+
f' | |
2f |
\left((2-D)\bar{\nabla}a\partialb\phi-\bar{g}ab\bar{\Box}\phi\right)+
1 | |
4 |
f\prime | |
f2 |
(D-2)\left(\partiala\phi\partialb\phi-\bar{g}ab\partialc\phi\partialc\phi\right)\\ R&=
1 | |
f |
\bar{R}+
1-D | |
f |
\left(
f''f-f\prime | |
f2 |
\partialc\phi\partialc\phi+
f' | |
f |
\bar{\Box}\phi\right)+
1 | |
4f |
f\prime | |
f2 |
(D-2)(1-D)\partialc\phi\partialc\phi\end{align}