In mathematics, the Weyl integration formula, introduced by Hermann Weyl, is an integration formula for a compact connected Lie group G in terms of a maximal torus T. Precisely, it says there exists a real-valued continuous function u on T such that for every class function f on G:
\intGf(g)dg=\intTf(t)u(t)dt.
u
u=|\delta|2/\#W
W=NG(T)/T
\delta(t)=\prod\alpha\left(e\alpha(t)/2-e-\alpha(t)/2\right),
f
\intGf(g)dg=\intT\left(\intGf(gtg-1)dg\right)u(t)dt.
The formula can be used to derive the Weyl character formula. (The theory of Verma modules, on the other hand, gives a purely algebraic derivation of the Weyl character formula.)
Consider the map
q:G/T x T\toG,(gT,t)\mapstogtg-1
G/T
nT\inW
nT(gT)=gn-1T.
G/T x WT
G/T
p:G/T x T\toG/T x WT
q
p
G/T x WT\toG
q
\#W
\#W\intGfdg=\intG/Tq*(fdg).
q*(fdg)|(gT,=f(t)
*(dg)| | |
q | |
(gT,t) |
f
*(dg)| | |
q | |
(gT,t) |
G/T x T
ak{g}/ak{t} ⊕ ak{t}
ak{g},ak{t}
G,T
v\inT
q(gv,t)=gvtv-1g-1
ak{g}/ak{t}
d(gT\mapstoq(gT,t))(
v) |
=gtg-1(gt-1
v |
tg-1-g
v |
g-1)=(\operatorname{Ad}(g)\circ(\operatorname{Ad}(t-1)-I))(
v). |
ak{t}
d(t\mapstoq(gT,t))=\operatorname{Ad}(g)
\det(\operatorname{Ad}(g))=1
q*(dg)=\det(\operatorname{Ad}ak{g/ak{t}}(t-1)-Iak{g/ak{t}})dg.
ak{g}C=ak{t}C ⊕ ⊕ \alphaak{g}\alpha
ak{g}\alpha=\{x\inak{g}C\mid\operatorname{Ad}(t)x=e\alpha(t)x,t\inT\}
ak{g}\alpha
\operatorname{Ad}ak{g/ak{t}}(t-1)
\det(\operatorname{Ad}ak{g/ak{t}}(t-1)-Iak{g/ak{t}})=\prod\alpha(e-\alpha(t)-1)(e\alpha(t)-1)=\delta(t)\overline{\delta(t)},
\alpha
See main article: Weyl character formula.
The Weyl character formula is a consequence of the Weyl integral formula as follows. We first note that
W
*) | |
\operatorname{GL}(ak{t} | |
C |
ak{t}C
A\mu=\sumw(-1)l(w)ew(\mu)
l(w)
Λ
\chi
G
\mu\inΛ
\chi|T ⋅ \delta=A\mu
\|\chi\|2=\intG|\chi|2dg=1.
\chi|T ⋅ \delta\inZ[Λ].