In mathematics, the Weil–Brezin map, named after André Weil[1] and Jonathan Brezin,[2] is a unitary transformation that maps a Schwartz function on the real line to a smooth function on the Heisenberg manifold. The Weil–Brezin map gives a geometric interpretation of the Fourier transform, the Plancherel theorem and the Poisson summation formula.[3] [4] [5] The image of Gaussian functions under the Weil–Brezin map are nil-theta functions, which are related to theta functions. The Weil–Brezin map is sometimes referred to as the Zak transform,[6] which is widely applied in the field of physics and signal processing; however, the Weil–Brezin Map is defined via Heisenberg group geometrically, whereas there is no direct geometric or group theoretic interpretation from the Zak transform.
N
\langlex,y,t\rangle\langlea,b,c\rangle=\langlex+a,y+b,t+c+xb\rangle.
\Gamma
N
\Gamma
N
\Gamma\backslashN
\mu=dx\wedgedy\wedgedt
L2(\Gamma\backslashN)= ⊕ nHn
Hn=\{f\inL2(\Gamma\backslashN)\midf(\Gamma\langlex,y,t+s\rangle)=\exp(2\piins)f(\Gamma\langlex,y,t\rangle)\}
The Weil–Brezin map
W:L2(R)\toH1
W(\psi)(\Gamma\langlex,y,t\rangle)=\suml\in\psi(x+l)e2e2\pi
\psi
The inverse of the Weil–Brezin map
W-1:H1\toL2(R)
(W-1f)(x)=
1 | |
\int | |
0 |
f(\Gamma\langlex,y,0\rangle)dy
f
H1
For each real number
λ\ne0
Uλ
N
L2(R)
(Uλ(\langlea,b,c\rangle)\psi)(x)=e2\psi(x+a)
Uλ(\langlea,0,0\rangle)Uλ(\langle0,b,0\rangle)=e2\piUλ(\langle0,b,0\rangle)Uλ(\langlea,0,0\rangle)
U=U1
N
L2(R)
R
N
H1\subsetL2(\Gamma\backslashN)
WU(\langlea,b,c\rangle)=R(\langlea,b,c\rangle)W
U
L2(R)
R
H1
Let
J:N\toN
lF=W-1J*W
L2(R)
The norm-preserving property of
W
J*
For any Schwartz function
\psi
\suml\psi(l)=W(\psi)(\Gamma\langle0,0,0)\rangle)=(J*W(\psi))(\Gamma\langle0,0,0)\rangle)=W(\hat{\psi})(\Gamma\langle0,0,0)\rangle)=\suml\hat{\psi}(l)
For each
n\ne0
Hn\subsetL2(\Gamma\backslashN)
Hn=
|n|-1 | |
⊕ | |
m=0 |
Hn,m
Hn,m=\{f\inHn\midf(\Gamma\langlex,y+{1\overn},t\rangle)=e2\pif(\Gamma\langlex,y,t\rangle)\}
L(\langle0,1/n,0\rangle)
Hn
Hn,0,...,Hn,
The left translation
L(\langlem/n,0,0\rangle)
Hn
L(\langlem/n,0,0\rangle):Hn,0\toHn,m
For each
n\ne0
m=0,...,|n|-1
Wn,:L2(R)\toHn,
Wn,m(\psi)(\Gamma\langlex,y,t\rangle)=\suml\in\psi(x+l+{m\overn})e2e2\pi
\psi
Wn,m=L(\langlem/n,0,0\rangle)\circWn,0.
The inverse map
-1 | |
W | |
n,m |
:Hn,m\toL2(R)
-1 | |
(W | |
n,m |
f)(x)=
1 | |
\int | |
0 |
e-2\pif(\Gamma\langlex-{m\overn},y,0\rangle)dy
f
Hn,m
Similarly, the fundamental unitary representation
Un
Hn,m
Wn,m
Wn,mUn(\langlea,b,c\rangle)=R(\langlea,b,c\rangle)Wn,m
m,m'
-1 | |
(W | |
n,m' |
J*Wn,m\psi)(x)=e2\pi\hat{\psi}(nx)
For each
n>0
\phin(x)=(2n)1/4
-\pinx2 | |
e |
Kn
Hn
\{\boldsymbol{e}n,0,...,\boldsymbol{e}n,n-1\}
\boldsymbol{e}n,m=Wn,m(\phin)\inHn,m.
L(\langle1/n,0,0\rangle)
L(\langle0,1/n,0\rangle)
Kn
J*
Kn
J*\boldsymbol{e}n,m={1\over\sqrt{n}}\summ'e2\pi\boldsymbol{e}n,m'.
Nil-theta functions are functions on the Heisenberg manifold that are analogous to the theta functions on the complex plane. The image of Gaussian functions under the Weil–Brezin Map are nil-theta functions. There is a model[7] of the finite Fourier transform defined with nil-theta functions, and the nice property of the model is that the finite Fourier transform is compatible with the algebra structure of the space of nil-theta functions.
Let
ak{n}
N
ak{n}
X,Y,T
N
X(x,y,t)={\partial\over\partialx},
Y(x,y,t)={\partial\over\partialy}+x{\partial\over\partialt},
T(x,y,t)={\partial\over\partialt}.
\Gamma\backslashN
Introduce the notation
V-i=X-iY
n>0
V-i
Cinfty(\Gamma\backslashN)\capHn,m
\boldsymbol{e}n,m
We call
\ker(V-i:Cinfty(\Gamma\backslashN)\capHn\toHn)=\left\{\begin{array}{lr}Kn,&n>0\ C,&n=0\end{array}\right.
n
The nil-theta functions with pointwise multiplication on
\Gamma\backslashN
⊕ n\geKn
K0=C
Auslander and Tolimieri showed that this graded algebra is isomorphic to
C[x1,
2, | |
x | |
2 |
6 | |
x | |
3 |
+
4 | |
x | |
1 |
2 | |
x | |
2 |
+
6) | |
x | |
2 |
Let
\vartheta(z;\tau)=
infty | |
\sum | |
l=-infty |
\exp(\piil2\tau+2\piilz)
\vartheta(n(x+iy);ni)=(2n)-1/4
\piny2 | |
e |
\boldsymbol{e}n,0(\Gamma\langley,x,0\rangle)
f
C
n
\tau
Im(\tau)>0
a | |
[ | |
b] |
f(z+1)=\exp(\piia)f(z)
f(z+\tau)=\exp(\piib)\exp(-\piin(2z+\tau))f(z)
n
\tau
a | |
[ | |
b] |
a | |
\Theta | |
b](\tau, |
A)
\dim
a | |
\Theta | |
b](\tau, |
A)=n
0 | |
\Theta | |
0](i, |
A)
\thetan,m(z)=\suml\in\exp[-\pin(l+{m\overn})2+2\pii(ln+m)z)]
\thetan,m(x+iy)=(2n)-1/4
\piny2 | |
e |
\boldsymbol{e}n,m(\Gamma\langley,x,0\rangle)