In mathematics, the Weber modular functions are a family of three functions f, f1, and f2,[1] studied by Heinrich Martin Weber.
Let
q=e2\pi
\begin{align} ak{f}(\tau)&=
| ||||
q |
\prodn>0(1+qn-1/2)=
η2(\tau) | |
η(\tfrac{\tau |
{2})η(2\tau)}=
| ||||
e |
| |||||
η(\tau) |
,\\ ak{f}1(\tau)&=
| ||||
q |
\prodn>0(1-qn-1/2)=
η(\tfrac{\tau | |
2 |
)}{η(\tau)},\\ ak{f}2(\tau)&=\sqrt2
| ||||
q |
\prodn>0(1+qn)=
\sqrt2η(2\tau) | |
η(\tau) |
. \end{align}
These are also the definitions in Duke's paper "Continued Fractions and Modular Functions".[2] The function
η(\tau)
(e2\pi)\alpha
e2\pi
η
ak{f}(\tau)ak{f}1(\tau)ak{f}2(\tau)=\sqrt{2}.
The transformation τ → –1/τ fixes f and exchanges f1 and f2. So the 3-dimensional complex vector space with basis f, f1 and f2 is acted on by the group SL2(Z).
Alternatively, let
q=e\pi
\begin{align} ak{f}(q)&=
| ||||
q |
\prodn>0(1+q2n-1)=
η2(\tau) | |
η(\tfrac{\tau |
{2})η(2\tau)},\\ ak{f}1(q)&=
| ||||
q |
\prodn>0(1-q2n-1)=
η(\tfrac{\tau | |
2 |
)}{η(\tau)},\\ ak{f}2(q)&=\sqrt2
| ||||
q |
\prodn>0(1+q2n)=
\sqrt2η(2\tau) | |
η(\tau) |
. \end{align}
The form of the infinite product has slightly changed. But since the eta quotients remain the same, then
ak{f}i(\tau)=ak{f}i(q)
q=e\pi
Still employing the nome
q=e\pi
\begin{align} 21/4Gn&=
| ||||
q |
\prodn>0(1+q2n-1)=
η2(\tau) | |
η(\tfrac{\tau |
{2})η(2\tau)},\\ 21/4gn&=
| ||||
q |
\prodn>0(1-q2n-1)=
η(\tfrac{\tau | |
2 |
)}{η(\tau)}. \end{align}
The eta quotients make their connection to the first two Weber functions immediately apparent. In the nome, assume
\tau=\sqrt{-n}.
\begin{align} 21/4Gn&=ak{f}(q)=ak{f}(\tau),\\ 21/4gn&=ak{f}1(q)=ak{f}1(\tau). \end{align}
Ramanujan found many relations between
Gn
gn
ak{f}(q)
ak{f}1(q)
8)(G | |
(G | |
ng |
8 | |
n) |
=\tfrac14,
leads to
8(q)] | |
[ak{f} | |
1 |
8 | |
[ak{f}(q)ak{f} | |
1(q)] |
=[\sqrt2]8.
For many values of n, Ramanujan also tabulated
Gn
gn
ak{f}(q)
ak{f}1(q)
\tau=\sqrt{-5},\sqrt{-13},\sqrt{-37}
\begin{align} G5&=\left(
1+\sqrt{5 | |
and one can easily get
ak{f}(\tau)=21/4Gn
The argument of the classical Jacobi theta functions is traditionally the nome
q=e\pi,
\begin{align} \vartheta10(0;\tau)&=\theta2(q)=\sum
infty | |
n=-infty |
(n+1/2)2 | |
q |
=
2η2(2\tau) | |
η(\tau) |
,\\[2pt] \vartheta00(0;\tau)&=\theta3(q)=\sum
infty | |
n=-infty |
n2 | |
q |
=
η5(\tau) | |||||||||
|
=
| ||||||||||
η(\tau+1) |
,\\[3pt] \vartheta01(0;\tau)&=\theta4(q)=\sum
infty | |
n=-infty |
(-1)n
n2 | |
q |
=
| ||||||||||
η(\tau) |
. \end{align}
Dividing them by
η(\tau)
η(\tau)=
| ||||
e |
η(\tau+1)
ak{f}i(q)
\begin{align} | \theta2(q) |
η(\tau) |
&=
| ||||
ak{f} | ||||
2(q) |
&=
| ||||
ak{f} | ||||
1(q) |
&=ak{f}(q)2, \end{align}
with even-subscript theta functions purposely listed first. Using the well-known Jacobi identity with even subscripts on the LHS,
4 | |
\theta | |
4(q) |
=
4; | |
\theta | |
3(q) |
therefore,
8 | |
ak{f} | |
1(q) |
=ak{f}(q)8.
The three roots of the cubic equation
j(\tau)= | (x-16)3 |
x |
where j(τ) is the j-function are given by
xi=ak{f}(\tau)24,
24 | |
-ak{f} | |
1(\tau) |
,
24 | |
-ak{f} | |
2(\tau) |
j(\tau)=32 |
| |||||||||||
|
and using the definitions of the Weber functions in terms of the Jacobi theta functions, plus the fact that
2 | |
ak{f} | |
2(q) |
2ak{f}(q) | |
ak{f} | |
1(q) |
2=
\theta2(q) | |
η(\tau) |
\theta4(q) | |
η(\tau) |
\theta3(q) | |
η(\tau) |
=2
j(\tau)=\left( | ak{f |
(\tau) |
16
16 | |
+ak{f} | |
1(\tau) |
16 | |
+ak{f} | |
2(\tau) |
since
ak{f}i(\tau)=ak{f}i(q)
η(\tau)