In quantum mechanics, wave function collapse, also called reduction of the state vector,[1] occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.[2]
Calculations of quantum decoherence show that when a quantum system interacts with the environment, the superpositions apparently reduce to mixtures of classical alternatives. Significantly, the combined wave function of the system and environment continue to obey the Schrödinger equation throughout this apparent collapse.[3] More importantly, this is not enough to explain actual wave function collapse, as decoherence does not reduce it to a single eigenstate.[4] [5]
Historically, Werner Heisenberg was the first to use the idea of wave function reduction to explain quantum measurement.[6]
In quantum mechanics each measurable physical quantity of a quantum system is called an observable which, for example, could be the position
r
p
E
z
sz
\phii
ci
\{|\phii\rangle\}
The wave function is a specific representation of a quantum state. Wave functions can therefore always be expressed as eigenstates of an observable though the converse is not necessarily true.
To account for the experimental result that repeated measurements of a quantum system give the same results, the theory postulates a "collapse" or "reduction of the state vector" upon observation,[7] abruptly converting an arbitrary state into a single component eigenstate of the observable:
|\psi\rangle=\sumici|\phii\rangle → |\psi'\rangle=|\phii\rangle.
\phi
The complex coefficients
\{ci\}
\{|\phii\rangle\}
|ci|2
|\phii\rangle
\langle\psi|\psi\rangle=\sumi
2 | |
|c | |
i| |
=1.
As examples, individual counts in a double slit experiment with electrons appear at random locations on the detector; after many counts are summed the distribution shows a wave interference pattern.[10] In a Stern-Gerlach experiment with silver atoms, each particle appears in one of two areas unpredictably, but the final conclusion has equal numbers of events in each area.
This statistical aspect of quantum measurements differs fundamentally from classical mechanics. In quantum mechanics the only information we have about a system is its wave function and measurements of its wave function can only give statistical information.[7]
The two terms "reduction of the state vector" (or "state reduction" for short) and "wave function collapse" are used to describe the same concept. A quantum state is a mathematical description of a quantum system; a quantum state vector uses Hilbert space vectors for the description.[11] Reduction of the state vector replaces the full state vector with a single eigenstate of the observable.
The term "wave function" is typically used for a different mathematical representation of the quantum state, one that uses spatial coordinates also called the "position representation".[11] When the wave function representation is used, the "reduction" is called "wave function collapse".
The Schrodinger equation describes quantum systems but does not describe their measurement. Solution to the equations include all possible observable values for measurements, but measurements only result in one definite outcome. This difference is called the measurement problem of quantum mechanics. To predict measurement outcomes from quantum solutions, the orthodox interpretation of quantum theory postulates wave function collapse and uses the Born rule to compute the probable outcomes.[12] Despite the widespread quantitative success of these postulates scientists remain dissatisfied and have sought more detailed physical models. Rather than suspending the Schrodinger equation during the process of measurement, the measurement apparatus should be included and governed by the laws of quantum mechanics.[13]
Quantum theory offers no dynamical description of the "collapse" of the wave function. Viewed as a statistical theory, no description is expected. As Fuchs and Peres put it, "collapse is something that happens in our description of the system, not to the system itself".[14]
Various interpretations of quantum mechanics attempt to provide a physical model for collapse.[15] Three treatments of collapse can be found among the common interpretations. The first group includes hidden variable theories like de Broglie–Bohm theory; here random outcomes only result from unknown values of hidden variables. Results from tests of Bell's theorem shows that these variables would need to be non-local. The second group models measurement as quantum entanglement between the quantum state and the measurement apparatus. This results in a simulation of classical statistics called quantum decoherence. This group includes the many-worlds interpretation and consistent histories models. The third group postulates additional, but as yet undetected, physical basis for the randomness; this group includes for example the objective-collapse interpretations. While models in all groups have contributed to better understanding of quantum theory, no alternative explanation for individual events has emerged as more useful than collapse followed by statistical prediction with the Born rule.[15]
The significance ascribed to the wave function varies from interpretation to interpretation, and varies even within an interpretation (such as the Copenhagen Interpretation). If the wave function merely encodes an observer's knowledge of the universe then the wave function collapse corresponds to the receipt of new information. This is somewhat analogous to the situation in classical physics, except that the classical "wave function" does not necessarily obey a wave equation. If the wave function is physically real, in some sense and to some extent, then the collapse of the wave function is also seen as a real process, to the same extent.
See main article: article and Quantum decoherence.
Quantum decoherence explains why a system interacting with an environment transitions from being a pure state, exhibiting superpositions, to a mixed state, an incoherent combination of classical alternatives. This transition is fundamentally reversible, as the combined state of system and environment is still pure, but for all practical purposes irreversible in the same sense as in the second law of thermodynamics: the environment is a very large and complex quantum system, and it is not feasible to reverse their interaction. Decoherence is thus very important for explaining the classical limit of quantum mechanics, but cannot explain wave function collapse, as all classical alternatives are still present in the mixed state, and wave function collapse selects only one of them.[4] [16]
The concept of wavefunction collapse was introduced by Werner Heisenberg in his 1927 paper on the uncertainty principle, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", and incorporated into the mathematical formulation of quantum mechanics by John von Neumann, in his 1932 treatise Mathematische Grundlagen der Quantenmechanik.[17] Heisenberg did not try to specify exactly what the collapse of the wavefunction meant. However, he emphasized that it should not be understood as a physical process.[18] Niels Bohr also repeatedly cautioned that we must give up a "pictorial representation", and perhaps also interpreted collapse as a formal, not physical, process.[19]
The "Copenhagen" model espoused by Heisenberg and Bohr separated the quantum system from the classical measurement apparatus. In 1932 von Neumann took a more formal approach, developing an "ideal" measurement scheme[20] [21] that postulated that there were two processes of wave function change:
In 1957 Hugh Everett III proposed a model of quantum mechanics that dropped von Neumann's first postulate. Everett observed that the measurement apparatus was also a quantum system and its quantum interaction with the system under observation should determine the results. He proposed that the discontinuous change is instead a splitting of a wave function representing the universe.[21] While Everett's approach rekindled interest in foundational quantum mechanics, it left core issues unresolved. Two key issues relate to origin of the observed classical results: what causes quantum systems to appear classical and to resolve with the observed probabilities of the Born rule.[21] [20]
Beginning in 1970 H. Dieter Zeh sought a detailed quantum decoherence model for the discontinuous change without postulating collapse. Further work by Wojciech H. Zurek in 1980 lead eventually to a large number of papers on many aspects of the concept.[22] Decoherence assumes that every quantum system interacts quantum mechanically with its environment and such interaction is not separable from the system, a concept called an "open system".[21] Decoherence has been shown to work very quickly and within a minimal environment, but as yet it has not succeeded in a providing a detailed model replacing the collapse postulate of orthodox quantum mechanics.[21]
By explicitly dealing with the interaction of object and measuring instrument, von Neumann[2] described a quantum mechanical measurement scheme consistent with wave function collapse. However, he did not prove the necessity of such a collapse. Although von Neumann's projection postulate is often presented as a normative description of quantum measurement, it was conceived by taking into account experimental evidence available during the 1930s (in particular Compton scattering was paradigmatic). Later work discussed so-called measurements of the second kind, that is to say measurements that will not give the same value when immediately repeated as opposed to the more easily discussed measurements of the first kind, which will.[23] [24] [25]
Book: J. von Neumann . 1955 . Mathematical Foundations of Quantum Mechanics . registration . Princeton University Press.