In mathematics, Watson's lemma, proved by G. N. Watson (1918, p. 133), has significant application within the theory on the asymptotic behavior of integrals.
Let
0<T\leqinfty
\varphi(t)=tλg(t)
g(t)
t=0
g(0) ≠ 0
λ>-1
Suppose, in addition, either that
|\varphi(t)|<Kebt \forallt>0,
where
K,b
t
T | |
\int | |
0 |
|\varphi(t)|dt<infty.
Then, it is true that for all positive
x
T | |
\left|\int | |
0 |
e-x\varphi(t)dt\right|<infty
and that the following asymptotic equivalence holds:
T | |
\int | |
0 |
e-x\varphi(t)
infty | |
dt\sim \sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
, (x>0, x → infty).
See, for instance, for the original proof or for a more recent development.
We will prove the version of Watson's lemma which assumes that
|\varphi(t)|
t\toinfty
g(t)
g
Let
0<T\leqinfty
\varphi
\varphi(t)=tλg(t)
λ>-1
g
[0,\delta]
0<\delta<T
|\varphi(t)|\leqKebt
\delta\leqt\leqT
K
b
t
We can show that the integral is finite for
x
(1)
T | |
\int | |
0 |
e-xt\varphi(t)dt=
\delta | |
\int | |
0 |
e-xt\varphi(t)dt+
T | |
\int | |
\delta |
e-xt\varphi(t)dt
For the first term we have
\delta | |
\left|\int | |
0 |
e-xt\varphi(t)dt\right|\leq
\delta | |
\int | |
0 |
e-xt|\varphi(t)|dt\leq
\delta | |
\int | |
0 |
|\varphi(t)|dt
x\geq0
g
[0,\delta]
λ>-1
\varphi
x>b
T | |
\begin{align} \left|\int | |
\delta |
e-xt\varphi(t)dt\right|&\leq
T | |
\int | |
\delta |
e-xt|\varphi(t)|dt\\ &\leqK
T | |
\int | |
\delta |
e(b-x)tdt\\ &\leqK
infty | |
\int | |
\delta |
e(b-x)tdt\\ &=K
e(b-x)\delta | |
x-b |
. \end{align}
(1)
We can deduce from the above calculation that
(2)
T | |
\int | |
0 |
e-xt\varphi(t)dt=
\delta | |
\int | |
0 |
e-xt\varphi(t)dt+O\left(x-1e-\delta\right)
x\toinfty
By appealing to Taylor's theorem with remainder we know that, for each integer
N\geq0
g(t)=
N | |
\sum | |
n=0 |
g(n)(0) | |
n! |
tn+
g(N+1)(t*) | |
(N+1)! |
tN+1
0\leqt\leq\delta
0\leqt*\leqt
(2)
\begin{align} (3)
\delta | |
\int | |
0 |
e-xt\varphi(t)dt&=
\delta | |
\int | |
0 |
e-xttλg(t)dt\\ &=
N | |
\sum | |
n=0 |
g(n)(0) | |
n! |
\delta | |
\int | |
0 |
tλe-xtdt+
1 | |
(N+1)! |
\delta | |
\int | |
0 |
g(N+1)(t*)tλ+N+1e-xtdt. \end{align}
g(N+1)
[0,\delta]
\delta | |
\begin{align} \left|\int | |
0 |
g(N+1)(t*)tλ+N+1e-xtdt\right|&\leq\supt\left|g(N+1)(t)\right|
\delta | |
\int | |
0 |
tλ+N+1e-xtdt\\ &<\supt\left|g(N+1)(t)\right|
infty | |
\int | |
0 |
tλ+N+1e-xtdt\\ &=\supt\left|g(N+1)(t)\right|
\Gamma(λ+N+2) | |
xλ+N+2 |
. \end{align}
infty | |
\int | |
0 |
tae-xtdt=
\Gamma(a+1) | |
xa+1 |
x>0
a>-1
\Gamma
From the above calculation we see from
(3)
(4)
\delta | |
\int | |
0 |
e-xt\varphi(t)dt=
N | |
\sum | |
n=0 |
g(n)(0) | |
n! |
\delta | |
\int | |
0 |
tλe-xtdt+O\left(x-λ-N-2\right)
x\toinfty
We will now add the tails on to each integral in
(4)
n
\delta | |
\begin{align} \int | |
0 |
tλe-xtdt&=
infty | |
\int | |
0 |
tλe-xtdt-
infty | |
\int | |
\delta |
tλe-xtdt\\[5pt] &=
\Gamma(λ+n+1) | |
xλ+n+1 |
-
infty | |
\int | |
\delta |
tλe-xtdt, \end{align}
t=s+\delta
infty | |
\begin{align} \int | |
\delta |
tλe-xtdt&=
infty | |
\int | |
0 |
(s+\delta)λe-x(s+\delta)ds\\[5pt] &=e-\delta
infty | |
\int | |
0 |
(s+\delta)λe-xsds\\[5pt] &\leqe-\delta
infty | |
\int | |
0 |
(s+\delta)λe-sds \end{align}
x\geq1
\delta | |
\int | |
0 |
tλe-xtdt=
\Gamma(λ+n+1) | |
xλ+n+1 |
+O\left(e-\delta\right)asx\toinfty.
If we substitute this last result into
(4)
\delta | |
\begin{align} \int | |
0 |
e-xt\varphi(t)dt&=
N | |
\sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
+O\left(e-\delta\right)+O\left(x-λ-N-2\right)\\ &=
N | |
\sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
+O\left(x-λ-N-2\right) \end{align}
x\toinfty
(2)
T | |
\begin{align} \int | |
0 |
e-xt\varphi(t)dt&=
N | |
\sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
+O\left(x-λ-N-2\right)+O\left(x-1e-\delta\right)\\ &=
N | |
\sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
+O\left(x-λ-N-2\right) \end{align}
x\toinfty
Since this last expression is true for each integer
N\geq0
T | |
\int | |
0 |
e-xt\varphi(t)dt\sim
infty | |
\sum | |
n=0 |
g(n)(0) \Gamma(λ+n+1) | |
n! xλ+n+1 |
x\toinfty
When
0<a<b
{}1F1(a,b,x)=
\Gamma(b) | |
\Gamma(a)\Gamma(b-a) |
1 | |
\int | |
0 |
extta-1(1-t)b-a-1dt,
\Gamma
t=1-s
{}1F1(a,b,x)=
\Gamma(b) | |
\Gamma(a)\Gamma(b-a) |
1 | |
e | |
0 |
e-xs(1-s)a-1sb-a-1ds,
λ=b-a-1
g(s)=(1-s)a-1
1 | |
\int | |
0 |
e-xs(1-s)a-1sb-a-1ds\sim\Gamma(b-a)xa-b asx\toinftywithx>0,
{}1F1(a,b,x)\sim
\Gamma(b) | |
\Gamma(a) |
xa-bex asx\toinftywithx>0.