In mathematics, and more precisely in analysis, the Wallis integrals constitute a family of integrals introduced by John Wallis.
The Wallis integrals are the terms of the sequence
(Wn)n
Wn=
| ||||
\int | ||||
0 |
\sinnxdx,
Wn=
| ||||
\int | ||||
0 |
\cosnxdx.
- | W0 | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | ... | Wn | - |
| 1 |
|
|
|
|
|
|
| ... |
Wn-2 |
The sequence
(Wn)
n\geq0:
Wn>0,
Wn-Wn+1=
| ||||
\int | ||||
0 |
\sinnxdx-
| ||||
\int | ||||
0 |
\sinn+1xdx=
| ||||
\int | ||||
0 |
(\sinnx)(1-\sinx)dx>0,
(Wn)
By means of integration by parts, a reduction formula can be obtained. Using the identity
\sin2x=1-\cos2x
n\geq2
\begin{align}
| ||||
\int | ||||
0 |
\sinnxdx&=
| ||||
\int | ||||
0 |
(\sinn-2x)(1-\cos2x)dx\\ &=
| ||||
\int | ||||
0 |
\sinn-2xdx-
| ||||
\int | ||||
0 |
\sinn-2x\cos2xdx. Equation(1) \end{align}
Integrating the second integral by parts, with:
v'(x)=\cos(x)\sinn-2(x)
v(x)=
1 | |
n-1 |
\sinn-1(x)
u(x)=\cos(x)
u'(x)=-\sin(x),
| ||||
\int | ||||
0 |
\sinn-2x\cos2xdx=\left[
\sinn-1x | |
n-1 |
\cosx
| ||||
\right] | ||||
0 |
+
1 | |
n-1 |
| ||||
\int | ||||
0 |
\sinn-1x\sinxdx=0+
1 | |
n-1 |
Wn.
Substituting this result into equation (1) gives
Wn=Wn-2-
1 | |
n-1 |
Wn,
Wn=
n-1 | |
n |
Wn-2, Equation(2)
n\geq2.
This is a recurrence relation giving
Wn
Wn-2
W0
W1,
(Wn)
n
W2p=
2p-1 | |
2p |
⋅
2p-3 | |
2p-2 |
…
1 | |
2 |
W0=
(2p-1)!! | |
(2p)!! |
⋅
\pi | |
2 |
=
(2p)! | |
22p(p!)2 |
⋅
\pi | |
2 |
,
W2p+1=
2p | |
2p+1 |
⋅
2p-2 | |
2p-1 |
…
2 | |
3 |
W1=
(2p)!! | |
(2p+1)!! |
=
22p(p!)2 | |
(2p+1)! |
.
Wallis's integrals can be evaluated by using Euler integrals:
\Beta(x,y)=
1 | |
\int | |
0 |
tx-1(1-t)y-1dt=
\Gamma(x)\Gamma(y) | |
\Gamma(x+y) |
\Gamma(z)=
infty | |
\int | |
0 |
tz-1e-tdt
\left\{\begin{matrix}t=\sin2u\ 1-t=\cos2u\ dt=2\sinu\cosudu\end{matrix}\right.,
\Beta(a,b)=
| ||||
2\int | ||||
0 |
\sin2a-1u\cos2b-1udu,
Wn=
1 | \Beta\left( | |
2 |
n+1 | , | |
2 |
1 | \right)= | |
2 |
\Gamma\left(\tfrac{n+1 | |
2 |
\right)\Gamma\left(\tfrac{1}{2}\right)}{2\Gamma\left(\tfrac{n}{2}+1\right)}.
So, for odd
n
n=2p+1
W2p+1=
| ||||||
|
=
| ||||||
|
=
2p p! | |
(2p+1)!! |
=
22p (p!)2 | |
(2p+1)! |
,
n
n=2p
\Gamma\left(\tfrac{1}{2}\right)=\sqrt{\pi}
W2p=
| |||||||||
2\Gamma\left(p+1\right) |
=
(2p-1)!! \pi | |
2p+1 p! |
=
(2p)! | |
22p (p!)2 |
⋅
\pi | |
2 |
.
(2)
Wn\simWn
Indeed, for all
n\inN
Wn\leqslantWn\leqslantWn
Wn | |
Wn |
\leqslant
Wn | |
Wn |
\leqslant1
Wn>0
n+1 | |
n+2 |
\leqslant
Wn | |
Wn |
\leqslant1
(2)
By the sandwich theorem, we conclude that
Wn | |
Wn |
\to1
Wn\simWn
WnWn+1
Wn\sim\sqrt{
\pi | |
2n |
\limn\sqrtnWn=\sqrt{\pi/2}
Suppose that we have the following equivalence (known as Stirling's formula):
n!\simC\sqrt{n}\left(
n | |
e |
\right)n,
C
W2p\sim\sqrt{
\pi | |
4p |
Expanding
W2p
\begin{align} W2p&=
(2p)! | ⋅ | |
22p(p!)2 |
\pi | |
2 |
\\ &\sim
| ||||||
From (3) and (4), we obtain by transitivity:
\pi | |
C\sqrt{2p |
C
C=\sqrt{2\pi}.
n!\sim\sqrt{2\pin}\left(
n | |
e |
\right)n.
Similarly, from above, we have:
W2p\sim\sqrt{
\pi | |
4p |
W2p
W2p=
(2p-1)!! | |
(2p)!! |
⋅
\pi | |
2 |
\sim
1 | \sqrt{ | |
2 |
\pi | |
p |
(2p-1)!! | |
(2p)!! |
\sim
1 | |
\sqrt{\pip |
(2p)!! | |
(2p-1)!! |
\sim\sqrt{\pip}.
The Gaussian integral can be evaluated through the use of Wallis' integrals.
We first prove the following inequalities:
\foralln\inN* \forallu\inR+ u\leqslantn ⇒ (1-u/n)n\leqslante-u
\foralln\inN* \forallu\inR+ e-u\leqslant(1+u/n)-n
u/n=t
t\in[0,1]
1-t\leqslante-t
e-t\leqslant(1+t)-1
et\geqslant1+t
t\mapstoet-1-t
Letting
u=x2
\sqrtn | |
\int | |
0 |
(1-x2/n)ndx\leqslant
\sqrtn | |
\int | |
0 |
-x2 | |
e |
dx\leqslant
+infty | |
\int | |
0 |
-x2 | |
e |
dx\leqslant
+infty | |
\int | |
0 |
(1+x2/n)-ndx
n\toinfty
The first and last integrals can be evaluated easily usingWallis' integrals.For the first one, let
x=\sqrtn\sint
\pi/2
\sqrtnW2n+1
x=\sqrtn\tant
0
\pi/2
\sqrtnW2n-2
As we have shown before,
\limn → \sqrtn Wn=\sqrt{\pi/2}
+infty | |
\int | |
0 |
-x2 | |
e |
dx=\sqrt{\pi}/2
Remark: There are other methods of evaluating the Gaussian integral.Some of them are more direct.
The same properties lead to Wallis product,which expresses
\pi | |
2 |
\pi