Waldspurger formula explained

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let be the base field, be an automorphic form over, be the representation associated via the Jacquet–Langlands correspondence with . Goro Shimura (1976) proved this formula, when

k=Q

and is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when

k=Q

and is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

Statement

Let

k

be a number field,

A

be its adele ring,

k x

be the subgroup of invertible elements of

k

,

A x

be the subgroup of the invertible elements of

A

,

\chi,\chi1,\chi2

be three quadratic characters over

A x /k x

,

G=SL2(k)

,

l{A}(G)

be the space of all cusp forms over

G(k)\backslashG(A)

,

l{H}

be the Hecke algebra of

G(A)

. Assume that,

\pi

is an admissible irreducible representation from

G(A)

to

l{A}(G)

, the central character of π is trivial,

\pi\nu\sim\pi[h\nu]

when

\nu

is an archimedean place,

{A}

is a subspace of

{l{A}(G)}

such that

\pi|l{H}:l{H}\toA

. We suppose further that,

\varepsilon(\pi\chi,1/2)

is the Langlands

\varepsilon

-constant [{{harv | Langlands | 1970 }}; {{harv | Deligne | 1972 }} ] associated to

\pi

and

\chi

at

s=1/2

. There is a

{\gamma\ink x }

such that

k(\chi)=k(\sqrt{\gamma})

.
\left(\chi
\pi

\right)=\varepsilon(\pi\chi,1/2)\varepsilon(\pi,1/2)\chi(-1).

Definition 2. Let

{D\chi}

be the discriminant of

\chi

. p(\chi) = D_\chi^ \sum_ \left\vert \gamma_\nu \right\vert_\nu^.

Definition 3. Let

f0,f1\inA

.

b(f0,f1)=

\int
x\ink x

f0(x)\overline{f1(x)}dx.

Definition 4. Let

{T}

be a maximal torus of

{G}

,

{Z}

be the center of

{G}

,

\varphi\inA

. \beta (\varphi, T) = \int_ b(\pi (t)\varphi, \varphi) \, dt .

\beta

is a generalization of the Gauss sum.

Let

K

be a field such that

k(\pi)\subsetK\subsetC

. One can choose a K-subspace

{A0}

of

A

such that (i)

A=A0KC

; (ii)

(A0)\pi(G)=A0

. De facto, there is only one such

A0

modulo homothety. Let

T1,T2

be two maximal tori of

G

such that
\chi
T1

=\chi1

and
\chi
T2

=\chi2

. We can choose two elements

\varphi1,\varphi2

of

A0

such that

\beta(\varphi1,T1)0

and

\beta(\varphi2,T2)0

.

Definition 5. Let

D1,D2

be the discriminants of

\chi1,\chi2

.

p(\pi,\chi1,\chi2)=

-1/2
D
1
1/2
D
2

L(\chi1,1)-1L(\chi2,1)L(\pi\chi1,1/2)L(\pi\chi2,1/2)-1\beta(\varphi1,

-1
T
1)

\beta(\varphi2,T2).

\chi1=\chi2

, the right hand side of Definition 5 becomes trivial.

We take

\Sigmaf

to be the set,

{\Sigmas}

to be the set of (all

k

-places

\nu\mid\nu

is real, or finite and special).

Comments:

The case when and is a metaplectic cusp form

Let p be prime number,

Fp

be the field with p elements,

R=Fp[T],k=Fp(T),kinfty=

-1
F
p((T

)),oinfty

be the integer ring of

kinfty,l{H}=PGL2(kinfty)/PGL2(oinfty),\Gamma=PGL2(R)

. Assume that,

N,D\inR

, D is squarefree of even degree and coprime to N, the prime factorization of

N

is \prod_\ell \ell^. We take

\Gamma0(N)

to the set \left\,

S0(\Gamma0(N))

to be the set of all cusp forms of level N and depth 0. Suppose that,

\varphi,\varphi1,\varphi2\inS0(\Gamma0(N))

.

Definition 1. Let

\left(

c
d

\right)

be the Legendre symbol of c modulo d,

\widetilde{SL}2(kinfty)=Mp2(kinfty)

. Metaplectic morphism \eta : SL_2(R) \to \widetilde_2(k_\infty), \begin a & b \\ c & d \end \mapsto \left(\begin a & b \\ c & d \end, \left (\frac \right)\right).

Definition 2. Let

z=x+iy\inl{H},d\mu=

dxdy
\left\verty\right\vert2
. Petersson inner product \langle \varphi_1, \varphi_2\rangle = [\Gamma : \Gamma_0(N)]^ \int_ \varphi_1(z) \overline \, d\mu.

Definition 3. Let

n,P\inR

. Gauss sum G_n(P) = \sum_ \left (\frac \right) e(rnT^2).

Let

λinfty,

be the Laplace eigenvalue of

\varphi

. There is a constant

\theta\inR

such that

λinfty,=

e-i\theta+ei\theta
\sqrt{p

}.

Definition 4. Assume that

vinfty(a/b)=\deg(a)-\deg(b),\nu=vinfty(y)

. Whittaker function W_(y) = \begin\frac \left[\left(\frac{ e^{i\theta} } { \sqrt{p} }\right)^{\nu - 1} - \left(\frac{ e^{-i\theta} } { \sqrt{p} }\right)^{\nu - 1} \right], & \text \nu \geq 2; \\0, & \text. \end

Definition 5. Fourier–Whittaker expansion \varphi(z) = \sum_ \omega_\varphi(r) e(rxT^2) W_(y). One calls

\omega\varphi(r)

the Fourier–Whittaker coefficients of

\varphi

.

Definition 6. Atkin–Lehner operator W_ = \begin \ell^ & b \\ N & \ell^d \end with

2\alpha\ell
\ell

d-bN=

\alpha\ell
\ell

.

Definition 7. Assume that,

\varphi

is a Hecke eigenform. Atkin–Lehner eigenvalue w_ = \frac with
w
\alpha\ell,\varphi

=\pm1.

Definition 8. L(\varphi, s) = \sum_ \frac .

Let

\widetilde{S}0(\widetilde{\Gamma}0(N))

be the metaplectic version of

S0(\Gamma0(N))

,

\{E1,\ldots,Ed\}

be a nice Hecke eigenbasis for

\widetilde{S}0(\widetilde{\Gamma}0(N))

with respect to the Petersson inner product. We note the Shimura correspondence by

\operatorname{Sh}.

Theorem [{{harv | Altug | Tsimerman | 2010 }}, Thm 5.1, p. 60 ]. Suppose that K_\varphi = \frac 1 ,

\chiD

is a quadratic character with

\Delta(\chiD)=D

. Then \sum_ \left \vert \omega_(D) \right \vert_p^2 = \frac L(\varphi \otimes \chi_D, 1/2) \prod_\ell \left(1 + \left (\frac D \right) w_ \right).

References