Volkenborn integral explained

In mathematics, in the field of p-adic analysis, the Volkenborn integral is a method of integration for p-adic functions.

Definition

Let :

f:\Zp\to\Complexp

be a function from the p-adic integers taking values in the p-adic numbers. The Volkenborn integral is defined by the limit, if it exists:
\int
\Zp

f(x){\rmd}x=\limn

1
pn
pn-1
\sum
x=0

f(x).

More generally, if

Rn=\left\{\left.x=

n-1
\sum
i=r

bixi\right|bi=0,\ldots,p-1forr<n\right\}

then

\intKf(x){\rmd}x=\limn

1
pn
\sum
x\inRn\capK

f(x).

This integral was defined by Arnt Volkenborn.

Examples

\int
\Zp

1{\rmd}x=1

\int
\Zp

x{\rmd}x=-

1
2

\int
\Zp

x2{\rmd}x=

1
6

\int
\Zp

xk{\rmd}x=Bk

where

Bk

is the k-th Bernoulli number.

The above four examples can be easily checked by direct use of the definition and Faulhaber's formula.

\int
\Zp

{x\choosek}{\rmd}x=

(-1)k
k+1

\int
\Zp

(1+a)x{\rmd}x=

log(1+a)
a

\int
\Zp

ea{\rmd}x=

a
ea-1

The last two examples can be formally checked by expanding in the Taylor series and integrating term-wise.

\int
\Zp

logp(x+u){\rmd}u=\psip(x)

with

logp

the p-adic logarithmic function and

\psip

the p-adic digamma function.

Properties

\int
\Zp

f(x+m){\rmd}x=

\int
\Zp

f(x){\rmd}x+

m-1
\sum
x=0

f'(x)

From this it follows that the Volkenborn-integral is not translation invariant.

If

Pt=pt\Zp

then
\int
Pt

f(x){\rmd}x=

1
pt
\int
\Zp

f(ptx){\rmd}x

See also

References