In mathematics, in the field of p-adic analysis, the Volkenborn integral is a method of integration for p-adic functions.
Let :
f:\Zp\to\Complexp
\int | |
\Zp |
f(x){\rmd}x=\limn
1 | |
pn |
pn-1 | |
\sum | |
x=0 |
f(x).
More generally, if
Rn=\left\{\left.x=
n-1 | |
\sum | |
i=r |
bixi\right|bi=0,\ldots,p-1forr<n\right\}
then
\intKf(x){\rmd}x=\limn
1 | |
pn |
\sum | |
x\inRn\capK |
f(x).
This integral was defined by Arnt Volkenborn.
\int | |
\Zp |
1{\rmd}x=1
\int | |
\Zp |
x{\rmd}x=-
1 | |
2 |
\int | |
\Zp |
x2{\rmd}x=
1 | |
6 |
\int | |
\Zp |
xk{\rmd}x=Bk
where
Bk
The above four examples can be easily checked by direct use of the definition and Faulhaber's formula.
\int | |
\Zp |
{x\choosek}{\rmd}x=
(-1)k | |
k+1 |
\int | |
\Zp |
(1+a)x{\rmd}x=
log(1+a) | |
a |
\int | |
\Zp |
ea{\rmd}x=
a | |
ea-1 |
The last two examples can be formally checked by expanding in the Taylor series and integrating term-wise.
\int | |
\Zp |
logp(x+u){\rmd}u=\psip(x)
with
logp
\psip
\int | |
\Zp |
f(x+m){\rmd}x=
\int | |
\Zp |
f(x){\rmd}x+
m-1 | |
\sum | |
x=0 |
f'(x)
From this it follows that the Volkenborn-integral is not translation invariant.
If
Pt=pt\Zp
\int | |
Pt |
f(x){\rmd}x=
1 | |
pt |
\int | |
\Zp |
f(ptx){\rmd}x