Voigt profile explained
The Voigt profile (named after Woldemar Voigt) is a probability distribution given by a convolution of a Cauchy-Lorentz distribution and a Gaussian distribution. It is often used in analyzing data from spectroscopy or diffraction.
Definition
Without loss of generality, we can consider only centered profiles, which peak at zero. The Voigt profile is then
V(x;\sigma,\gamma)\equiv
G(x';\sigma)L(x-x';\gamma)dx',
where x is the shift from the line center,
is the centered Gaussian profile:
G(x;\sigma)\equiv
\sigma},
and
is the centered Lorentzian profile:
The defining integral can be evaluated as:
V(x;\sigma,\gamma)= | \operatorname{Re |
[w(z)]}{\sqrt{2 |
\pi}\sigma},
where Re[''w''(''z'')] is the real part of the Faddeeva function evaluated for
In the limiting cases of
and
then
simplifies to
and
, respectively.
History and applications
In spectroscopy, a Voigt profile results from the convolution of two broadening mechanisms, one of which alone would produce a Gaussian profile (usually, as a result of the Doppler broadening), and the other would produce a Lorentzian profile. Voigt profiles are common in many branches of spectroscopy and diffraction. Due to the expense of computing the Faddeeva function, the Voigt profile is sometimes approximated using a pseudo-Voigt profile.
Properties
The Voigt profile is normalized:
since it is a convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth), and so the
moment-generating function for the
Cauchy distribution is not defined. It follows that the Voigt profile will not have a moment-generating function either, but the
characteristic function for the
Cauchy distribution is well defined, as is the characteristic function for the
normal distribution. The
characteristic function for the (centered) Voigt profile will then be the product of the two:
\varphif(t;\sigma,\gamma)=E(eixt)=
.
Since normal distributions and Cauchy distributions are stable distributions, they are each closed under convolution (up to change of scale), and it follows that the Voigt distributions are also closed under convolution.
Cumulative distribution function
Using the above definition for z, the cumulative distribution function (CDF) can be found as follows:
F(x0;\mu,\sigma)
=\int
| \operatorname{Re |
(w(z))}{\sigma\sqrt{2\pi}}dx
=\operatorname{Re}\left( | 1 | \sqrt{\pi |
|
}\int_^ w(z)\,dz\right).
Substituting the definition of the Faddeeva function (scaled complex error function) yields for the indefinite integral:
}\int w(z)\,dz =\frac\int e^\left[1-\operatorname{erf}(-iz)\right]\,dz,
which may be solved to yield
}\int w(z)\,dz = \frac+\frac\,_2F_2\left(1,1;\frac,2;-z^2\right),
where
is a
hypergeometric function. In order for the function to approach zero as
x approaches negative infinity (as the CDF must do), an integration constant of 1/2 must be added. This gives for the CDF of Voigt:
F(x;\mu,\sigma)=\operatorname{Re}\left[ | 1 | +
|
2 |
2F
,2;-z2\right)\right].
The uncentered Voigt profile
If the Gaussian profile is centered at
and the Lorentzian profile is centered at
, the convolution is centered at
and the characteristic function is:
\varphif(t;\sigma,\gamma,\muG,\muL)=
.
The probability density function is simply offset from the centered profile by
:
V(x;\mu | |
| V,\sigma,\gamma)= | \operatorname{Re | [w(z)]}{\sigma\sqrt{2 |
|
\pi}},
where:
z=
| x-\muV+i\gamma |
\sigma\sqrt{2 |
}
The mode and median are both located at
.
Derivatives
Using the definition above for
and
, the first and second derivatives can be expressed in terms of the Faddeeva function as
\begin{aligned}
V(xc;\sigma,\gamma)&=-
~w(z)\right]}{\sigma2\sqrt{\pi}}
=-
| \operatorname{Re |
\left[w(z)\right]}{\sigma\sqrt{2\pi}}+ | \gamma | \sigma2 |
|
| \operatorname{Im |
\left[w(z)\right]}{\sigma\sqrt{2\pi}} |
\\
&=
}\cdot\left(\gamma\cdot\operatorname\left[w(z)\right]-x_\cdot\operatorname\left[w(z)\right]\right)\endand
\begin{aligned}
| \partial2 |
\left(\partialx\right)2 |
V(xc;\sigma,\gamma)
&=
| \operatorname{Re |
\left[w(z)\right]}{\sigma\sqrt{2\pi}}
- | 2xc\gamma | \sigma4 |
|
| \operatorname{Im |
\left[w(z)\right]}{\sigma\sqrt{2\pi}}
+ | \gamma | \sigma4 |
|
\\
&=-
}\cdot\left(\gamma\cdot\left(2x_\cdot\operatorname\left[w(z)\right] - \sigma\cdot\sqrt\right) + \left(\gamma^ + \sigma^ - x_^\right)\cdot\operatorname\left[w(z)\right]\right),\endrespectively.
Often, one or multiple Voigt profiles and/or their respective derivatives need to be fitted to a measured signal by means of non-linear least squares, e.g., in spectroscopy. Then, further partial derivatives can be utilised to accelerate computations. Instead of approximating the Jacobian matrix with respect to the parameters
,
, and
with the aid of
finite differences, the corresponding analytical expressions can be applied. With
\operatorname{Re}\left[w(z)\right]=\Rew
and
\operatorname{Im}\left[w(z)\right]=\Imw
, these are given by:
\begin{align}
| \partialV |
\partial\muV |
=-
=
}\cdot\left(x_\cdot\Re_ - \gamma\cdot\Im_\right)\end
}\cdot\left(\left(x_^ - \gamma^-\sigma^\right)\cdot\Re_ - 2x_\gamma\cdot\Im_ + \gamma\sigma\cdot\sqrt\right)\end
}\cdot\left(\sigma\cdot\sqrt - x_\cdot\Im_ - \gamma\cdot\Re_\right)\end
for the original voigt profile
;
\begin{align}
| \partialV' |
\partial\muV |
=-
=-
| \partial2V |
\left(\partialx\right)2 |
=
}\cdot\left(\gamma\cdot\left(2x_\cdot\Im_ - \sigma\cdot\sqrt\right) + \left(\gamma^ + \sigma^ - x_^\right)\cdot\Re_\right)\end
\begin{align}
| \partialV' |
\partial\sigma |
=
}\cdot\left(-\gamma\sigma x_\cdot\frac + \left(x_^ - \frac - \sigma^\right)\cdot\gamma\cdot\Im_ + \left(\gamma^ + \sigma^ - \frac\right)\cdot x_\cdot\Re_\right)\end
\begin{align}
| \partialV' |
\partial\gamma |
=
}\cdot\left(x_\cdot\left(\sigma\cdot\sqrt - 2\gamma\cdot\Re_\right) + \left(\gamma^ + \sigma^ - x_^\right)\cdot\Im_\right)\end
for the first order partial derivative
; and
\begin{align}
| \partialV'' |
\partial\muV |
=-
=-
| \partial3V |
\left(\partialx\right)3 |
=-
}\cdot\left(\left(x_^ - \frac - \sigma^\right)\cdot\gamma\cdot\Im_ + \left(\gamma^ + \sigma^ - \frac\right)\cdot x_\cdot\Re_ - \gamma\sigma x_\cdot\frac\right)\end
\begin{align}
&
| \partialV'' |
\partial\sigma |
=-
}\cdot \\ & \left(\left(-3\gamma x_\sigma^ + \gamma x_^ - \gamma^ x_\right)\cdot 4\cdot\Im_ + \left(\left(2x_^ - 2\gamma^ - \sigma^\right)\cdot 3\sigma^ + 6\gamma^ x_^ - x_^ - \gamma^\right)\cdot\Re_ + \left(\gamma^ + 5\sigma^ - 3x_^\right)\cdot\gamma\sigma\cdot\sqrt\right)\end
\begin{align}
| \partialV'' |
\partial\gamma |
=-
}\cdot\left(\left(\gamma^ + \sigma^ - \frac\right)\cdot x_\cdot\Im_ + \left(\frac + \sigma^ - x_^\right)\cdot \gamma\cdot\Re_ + \left(x_^ - \gamma^ - 2\sigma^ \right)\cdot\sigma\cdot\frac\right)\end
for the second order partial derivative
V''=
| \partial2V |
\left(\partialx\right)2 |
. Since
and
play a relatively similar role in the calculation of
, their respective partial derivatives also look quite similar in terms of their structure, although they result in totally different derivative profiles. Indeed, the partial derivatives with respect to
and
show more similarity since both are width parameters. All these derivatives involve only simple operations (multiplications and additions) because the computationally expensive
and
are readily obtained when computing
. Such a reuse of previous calculations allows for a derivation at minimum costs. This is not the case for
finite difference gradient approximation as it requires the evaluation of
for each gradient respectively.
Voigt functions
The Voigt functions U, V, and H (sometimes called the line broadening function) are defined by
U(x,t)+iV(x,t)=\sqrt
\operatorname{erfc}(z)=\sqrt
w(iz),
where
erfc is the complementary error function, and
w(
z) is the
Faddeeva function.
Relation to Voigt profile
V(x;\sigma,\gamma)=
\sigma},
with Gaussian sigma relative variables
and
Numeric approximations
Tepper-García Function
The Tepper-García function, named after German-Mexican Astrophysicist Thor Tepper-García, is a combination of an exponential function and rational functions that approximates the line broadening function
over a wide range of its parameters.
[1] It is obtained from a truncated
power series expansion of the exact line broadening function.
In its most computationally efficient form, the Tepper-García function can be expressed as
T(a,u)=R-\left(a/\sqrt{\pi}P\right)~\left[R2~(4P2+7P+4+Q)-Q-1\right],
where
,
, and
.
Thus the line broadening function can be viewed, to first order, as a pure Gaussian function plus a correction factor that depends linearly on the microscopic properties of the absorbing medium (encoded in
); however, as a result of the early truncation in the series expansion, the error in the approximation is still of order
, i.e.
. This approximation has a relative accuracy of
\epsilon\equiv
| \vertH(a,u)-T(a,u)\vert |
H(a,u) |
\lesssim10-4
over the full wavelength range of
, provided that
.In addition to its high accuracy, the function
is easy to implement as well as computationally fast. It is widely used in the field of quasar absorption line analysis.
[2] Pseudo-Voigt approximation
The pseudo-Voigt profile (or pseudo-Voigt function) is an approximation of the Voigt profile V(x) using a linear combination of a Gaussian curve G(x) and a Lorentzian curve L(x) instead of their convolution.
The pseudo-Voigt function is often used for calculations of experimental spectral line shapes.
The mathematical definition of the normalized pseudo-Voigt profile is given by
Vp(x,f)=η ⋅ L(x,f)+(1-η) ⋅ G(x,f)
with
.
is a function of
full width at half maximum (FWHM) parameter.
There are several possible choices for the
parameter.
[3] [4] [5] [6] A simple formula, accurate to 1%, is
[7] [8] η=1.36603(fL/f)-0.47719
+
where now,
is a function of Lorentz (
), Gaussian (
) and total (
)
Full width at half maximum (FWHM) parameters. The total FWHM (
) parameter is described by:
f=
+2.69269
fL+2.42843
+4.47163
+0.07842fG
+
1/5.
The width of the Voigt profile
The full width at half maximum (FWHM) of the Voigt profile can be found from thewidths of the associated Gaussian and Lorentzian widths. The FWHM of the Gaussian profile is
The FWHM of the Lorentzian profile is
An approximate relation (accurate to within about 1.2%) between the widths of the Voigt, Gaussian, and Lorentzian profiles is:[9]
By construction, this expression is exact for a pure Gaussian or Lorentzian.
A better approximation with an accuracy of 0.02% is given by [10] (originally found by Kielkopf)
fV ≈ 0.5346fL+\sqrt{0.2166f
Again, this expression is exact for a pure Gaussian or Lorentzian.In the same publication, a slightly more precise (within 0.012%), yet significantly more complicated expression can be found.
Asymmetric Pseudo-Voigt (Martinelli) function
The asymmetry pseudo-Voigt (Martinelli) function resembles a split normal distribution by having different widths on each side of the peak position. Mathematically this is expressed as:
Vp(x,f)=η ⋅ L(x,f)+(1-η) ⋅ G(x,f)
with
being the weight of the Lorentzian and the width
being a split function (
for
and
for
). In the limit
, the Martinelli function returns to a symmetry pseudo Voigt function. The Martinelli function has been used to model elastic scattering on
resonant inelastic X-ray scattering instruments.
[11] External links
- http://jugit.fz-juelich.de/mlz/libcerf, numeric C library for complex error functions, provides a function voigt(x, sigma, gamma) with approximately 13–14 digits precision.
- The original article is : Voigt, Woldemar, 1912, ''Das Gesetz der Intensitätsverteilung innerhalb der Linien eines Gasspektrums'', Sitzungsbericht der Bayerischen Akademie der Wissenschaften, 25, 603 (see also: http://publikationen.badw.de/de/003395768)
Notes and References
- Tepper-García . Thorsten . Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt-Hjerting function . Monthly Notices of the Royal Astronomical Society . 2006 . 369 . 4 . 2025–2035 . 10.1111/j.1365-2966.2006.10450.x. free . astro-ph/0602124 . 2006MNRAS.369.2025T . 16981310 .
- List of citations found in the SAO/NASA Astrophysics Data System (ADS): https://ui.adsabs.harvard.edu/abs/2006MNRAS.369.2025T/citations
- Determination of the Gaussian and Lorentzian content of experimental line shapes. Wertheim GK, Butler MA, West KW, Buchanan DN. Review of Scientific Instruments. 45. 11. 1369–1371. 1974. 10.1063/1.1686503. 1974RScI...45.1369W.
- The Use of the Pseudo-Voigt Function in the Variance Method of X-ray Line-Broadening Analysis. Sánchez-Bajo . F.. F. L. Cumbrera. Journal of Applied Crystallography. 10.1107/S0021889896015464. 30. 4. 427–430. August 1997. 1997JApCr..30..427S .
- Simple empirical analytical approximation to the Voigt profile. Liu Y, Lin J, Huang G, Guo Y, Duan C. JOSA B. 18. 5. 666–672. 2001. 10.1364/josab.18.000666. 2001JOSAB..18..666L.
- The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends Only on the Widths Ratio. Di Rocco HO, Cruzado A . amp . Acta Physica Polonica A. 122. 4. 666–669. 2012. 0587-4246. 10.12693/APhysPolA.122.666. 2012AcPPA.122..666D . free.
- Extended pseudo-Voigt function for approximating the Voigt profile. Ida T, Ando M, Toraya H. Journal of Applied Crystallography. 33. 6. 1311–1316. 2000. 10.1107/s0021889800010219. 55372305.
- Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. P. Thompson, D. E. Cox and J. B. Hastings. Journal of Applied Crystallography. 20 . 2. 79–83. 1987. 10.1107/S0021889887087090. 1987JApCr..20...79T.
- 10.1016/0022-4073(68)90081-2. 0022-4073. 8. 6. 1379–1384. Whiting. E. E.. An empirical approximation to the Voigt profile. Journal of Quantitative Spectroscopy and Radiative Transfer. June 1968. 1968JQSRT...8.1379W.
- 10.1016/0022-4073(77)90161-3. 0022-4073. 17. 2. 233–236. Olivero. J. J.. R. L. Longbothum. Empirical fits to the Voigt line width: A brief review. Journal of Quantitative Spectroscopy and Radiative Transfer. February 1977. 1977JQSRT..17..233O .
- Martinelli . L. . Biało . I. . Hong . X. . Oppliger . J. . Lin . C. . Schaller . T. . Küspert . J. . Fischer . M. H. . Kurosawa . T. . 2024 . Decoupled static and dynamical charge correlations in La2−xSrxCuO4 . cond-mat.str-el . 2406.15062 . 4.