In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in Lp in terms of convergence in measure and a condition related to uniform integrability.
Let
(X,l{A},\mu)
\mu:l{A}\to[0,infty]
\mu(\emptyset)=0
\mu
f:X\toK
K=\R
C
l{F}\subsetL1(X,l{A},\mu)
\limM\to+infty\supf\inl{F
\forall \varepsilon>0, \exists M\varepsilon>0 :\supf\inl{F
l{F}\subsetL1(X,l{A},\mu)
\lim\mu(A)\to\supf\inl{F
\forall \varepsilon>0, \exists \delta\varepsilon>0, \forall A\inl{A}:\mu(A)<\delta\varepsilon ⇒ \supf\in
When
\mu(X)<infty
l{F}\subsetL1(X,l{A},\mu)
L1(X,l{A},\mu)
\mu
Let
(X,l{A},\mu)
\mu(X)<infty
(fn)\subsetLp(X,l{A},\mu)
f
l{A}
f\inLp(X,l{A},\mu)
(fn)
f
Lp(X,l{A},\mu)
(fn)
\mu
f
p) | |
(|f | |
n\geq1 |
For a proof, see Bogachev's monograph "Measure Theory, Volume I".
Let
(X,l{A},\mu)
1\leqp<infty
(fn)n\geq\subseteqLp(X,l{A},\mu)
f\inLp(X,l{A},\mu)
(fn)
f
Lp(X,l{A},\mu)
(fn)
\mu
f
(fn)
\varepsilon>0
X\varepsilon\inl{A}
\mu(X\varepsilon)<infty
\supn\geq
\int | |
X\setminusX\varepsilon |
p | |
|f | |
n| |
d\mu<\varepsilon.
\mu(X)<infty
X\varepsilon=X
p) | |
(|f | |
n\geq1 |
Let
(X,l{A},\mu)
(fn)n\geq\subseteqL1(X,l{A},\mu)
\limn\toinfty\intAfnd\mu
A\inl{A}
(fn)
L1(X,l{A},\mu)
f\inL1(X,l{A},\mu)
\limn\toinfty\intAfnd\mu=\intAfd\mu
A\inl{A}
When
\mu(X)<infty
(fn)
For a proof, see Bogachev's monograph "Measure Theory, Volume I".