In mathematics, Vinberg's algorithm is an algorithm, introduced by Ernest Borisovich Vinberg, for finding a fundamental domain of a hyperbolic reflection group.
used Vinberg's algorithm to describe the automorphism group of the 26-dimensional even unimodular Lorentzian lattice II25,1 in terms of the Leech lattice.
Let
\Gamma<Isom(Hn)
v0\inHn
P0
\Gamma | |
v0 |
Hn
H1,...,Hm
a1,...,am
- | |
H | |
k |
=\{x\in\Rn,1|(x,ak)\le0\}.
There exists a unique fundamental polyhedron
P
\Gamma
P0
v0
v0
H1,...,Hm
P0
Hm+1,...
am+1,...
Hj
aj
(1)
(v0,aj)<0
(2)
(ai,aj)\le0
i<j
(3) the distance
(v0,Hj)