Vegetation index explained

A vegetation index (VI) is a spectral imaging transformation of two or more image bands designed to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations.

There are many VIs, with many being functionally equivalent. Many of the indices make use of the inverse relationship between red and near-infrared reflectance associated with healthy green vegetation. Since the 1960s scientists have used satellite remote sensing to monitor fluctuation in vegetation at the Earth's surface. Measurements of vegetation attributes include leaf area index (LAI), percent green cover, chlorophyll content, green biomass and absorbed photosynthetically active radiation (APAR).

VIs have been historically classified based on a range of attributes, including the number of spectral bands (2 or greater than 2); the method of calculations (ratio or orthogonal), depending on the required objective; or by their historical development (classified as first generation VIs or second generation VIs).[1] For the sake of comparison of the effectiveness of different VIs, Lyon, Yuan et al. (1998)[2] classified 7 VIs based on their computation methods (Subtraction, Division or Rational Transform). Due to advances in hyperspectral remote sensing technology, high-resolution reflectance spectrums are now available, which can be used with traditional multispectral VIs. In addition, VIs have been developed to be used specifically with hyperspectral data, such as the use of Narrow Band Vegetation Indices.

Uses

Vegetation indices have been used to:

Types of vegetation index

Multispectral Vegetation Index

Hyperspectral Vegetation Index

With the advent of hyperspectral data, vegetation index have been developed specifically for hyperspectral data.

Advanced Vegetation Indices

With the emergence of machine learning, certain algorithms can be used to determine vegetation indices from data. This allows to take into account all spectral bands and to discover hidden parameters that can be useful to strengthen these vegetation indices. Thus, they can be more robust against light variations, shadows or even uncalibrated images if these artifacts exist in the training data.

See also

Notes and References

  1. Bannari. A.. Morin. D.. Bonn. F.. Huete. A. R.. 1995-08-01. A review of vegetation indices. Remote Sensing Reviews. 13. 1–2. 95–120. 10.1080/02757259509532298. 0275-7257.
  2. Lyon. John G. 1998. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing. 143–150. 10.1.1.462.2056.
  3. Eklundh. L.. Olsson. L.. Vegetation index trends for the African Sahel 1982-1999. Geophysical Research Letters. 30. 8. 1430. 2003. 0094-8276. 10.1029/2002GL016772. 2003GeoRL..30.1430E. 129096989 . free.
  4. Gillies. R. R.. Kustas. W. P.. Humes. K. S.. A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. International Journal of Remote Sensing. 18. 15. 1997. 3145–3166. 0143-1161. 10.1080/014311697217026. 1997IJRS...18.3145G.
  5. Sandholt. Inge. Rasmussen. Kjeld. Andersen. Jens. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment. 79. 2–3. 2002. 213–224. 0034-4257. 10.1016/S0034-4257(01)00274-7. 2002RSEnv..79..213S.
  6. Drought Monitoring with NDVI-Based Standardized Vegetation Index. Peters . A.J. . Walter-Shea . E.A. . Ji . L. . Vliia . A. . Hayes . M. . Svoboda . M.D.. 2002. Photogrammetric Engineering & Remote Sensing . 68 . 1 . 71–75. 16 May 2018.
  7. Kogan. F.N.. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research. 15. 11. 1995. 91–100. 0273-1177. 10.1016/0273-1177(95)00079-T. 1995AdSpR..15k..91K.
  8. Wan. Z.. Wang. P.. Li. X.. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing. 25. 1. 2004. 61–72. 0143-1161. 10.1080/0143116031000115328. 2004IJRS...25...61W. 129234540.
  9. Jones. H. G.. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany. 55. 407. 2004. 2427–2436. 1460-2431. 10.1093/jxb/erh213. 15286143. free.
  10. Pinter, Jr.. Paul J.. Hatfield. Jerry L.. Schepers. James S.. Barnes. Edward M.. Moran. M. Susan. Daughtry. Craig S.T.. Upchurch. Dan R.. Remote Sensing for Crop Management. Photogrammetric Engineering & Remote Sensing. 69. 6. 2003. 647–664. 0099-1112. 10.14358/PERS.69.6.647. free.
  11. Kustas. W. P.. Norman. J. M.. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal. 41. 4. 2009. 495–516. 0262-6667. 10.1080/02626669609491522 .
  12. Pettorelli. Nathalie. Ryan. Sadie. Mueller. Thomas. Bunnefeld. Nils. Jędrzejewska. Bogumiła. Lima. Mauricio. Kausrud. Kyrre. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. 24872307. Climate Research. 46. 1. 15–27. 0936-577X . 10.3354/cr00936. 2011ClRes..46...15P. free.
  13. Lloyd. Daniel. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing. 11. 12. 1990. 2269–2279. 0143-1161. 10.1080/01431169008955174. 1990IJRS...11.2269L.
  14. Mahlein . A. K. . Rumpf . T. . Welke . P. . Dehne . H.W. . Plümer . L. . Steiner . U. . Oerke . E.C. . Development of spectral indices for detecting and identifying plant diseases . Remote Sensing of Environment . January 2013 . 128 . 21–30 . 10.1016/j.rse.2012.09.019 . 2013RSEnv.128...21M .
  15. Jordan. Carl F.. July 1969. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology. 50. 4. 663–666. 10.2307/1936256. 1936256. 1969Ecol...50..663J . 0012-9658.
  16. Bhandari. A.K.. Kumar. A.. Singh. G.K.. 2012. Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technology. 6. 612–621. 10.1016/j.protcy.2012.10.074. 2212-0173. free.
  17. Vrieling. Anton. de Leeuw. Jan. Said. Mohammed. 2013-02-22. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series. Remote Sensing. 5. 2. 982–1000. 10.3390/rs5020982. 2013RemS....5..982V. 2072-4292. free.
  18. Siwe. Rene Ngamabou. Koch. Barbara. 2008-01-12. Change vector analysis to categorise land cover change processes using the tasselled cap as biophysical indicator. Environmental Monitoring and Assessment. 145. 1–3. 227–235. 10.1007/s10661-007-0031-6. 18193332. 2008EMnAs.145..227S . 189913689. 0167-6369.
  19. Yousuf. Reem. AL-Khakani. Ebtihal. 2021. Assessing Degree of Desertification Using Tasselled Cap Transformation and Spectral Indicators Techniques: Iraq. Basic and Applied Sciences - Scientific Journal of King Faisal University. 10.37575/b/sci/0019. 1658-0311. free.
  20. Kauth R. J. & G. S. Thomas (1976): The tasseled Cap - A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data
  21. Rock. B. N.. Vogelmann. J. E.. Williams. D. L.. Vogelmann. A. F.. Hoshizaki. T.. July 1986. Remote Detection of Forest Damage. BioScience. 36. 7. 439–445. 10.2307/1310339. 1310339. 1525-3244.
  22. LWCI entry in the Index Database, https://www.indexdatabase.de/db/i-single.php?id=129
  23. Huete. A.R. August 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. en. 25. 3. 295–309. 10.1016/0034-4257(88)90106-X. 1988RSEnv..25..295H.
  24. 10.3390/rs13224635. Modeling Vegetation Water Stress over the Forest from Space: Temperature Vegetation Water Stress Index (TVWSI). Remote Sens.. 13. 22:4635. 2021. Joshi. R.C.. Ryu. D.. Sheridan. G.J.. Lane. P.N.J.. 4635. free. 2021RemS...13.4635J.
  25. Puente . Cesar . Olague . Gustavo . Trabucchi . Mattia . Arjona-Villicaña . P. David . Soubervielle-Montalvo . Carlos . January 2019 . Synthesis of Vegetation Indices Using Genetic Programming for Soil Erosion Estimation . Remote Sensing . en . 11 . 2 . 156 . 10.3390/rs11020156 . 2072-4292. free . 2019RemS...11..156P .
  26. Albarracín . Juan F. H. . Oliveira . Rafael S. . Hirota . Marina . dos Santos . Jefersson A. . Torres . Ricardo da S. . January 2020 . A Soft Computing Approach for Selecting and Combining Spectral Bands . Remote Sensing . en . 12 . 14 . 2267 . 10.3390/rs12142267 . 2072-4292. free . 2011.05127 . 2020RemS...12.2267A .
  27. Vayssade . Jehan-Antoine . Paoli . Jean-Noël . Gée . Christelle . Jones . Gawain . January 2021 . DeepIndices: Remote Sensing Indices Based on Approximation of Functions through Deep-Learning, Application to Uncalibrated Vegetation Images . Remote Sensing . en . 13 . 12 . 2261 . 10.3390/rs13122261 . 2072-4292. free . 2021RemS...13.2261V .