The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena.[1] The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.[2]
Stabilized methods are getting increasing attention in computational fluid dynamics because they are designed to solve drawbacks typical of the standard Galerkin method: advection-dominated flows problems and problems in which an arbitrary combination of interpolation functions may yield to unstable discretized formulations.[3] The milestone of stabilized methods for this class of problems can be considered the Streamline Upwind Petrov-Galerkin method (SUPG), designed during 80s for convection dominated-flows for the incompressible Navier–Stokes equations by Brooks and Hughes.[4] [5] Variational Multiscale Method (VMS) was introduced by Hughes in 1995. Broadly speaking, VMS is a technique used to get mathematical models and numerical methods which are able to catch multiscale phenomena; in fact, it is usually adopted for problems with huge scale ranges, which are separated into a number of scale groups.[6] The main idea of the method is to design a sum decomposition of the solution as
u=\baru+u'
\baru
u'
Consider an open bounded domain
\Omega\subsetRd
\Gamma\subsetRd-1
d\geq1
lL
findu:\Omega\toRsuchthat:
\begin{cases} lLu=f&in\Omega\\ u=g&on\Gamma\\ \end{cases}
being
f:\Omega\toR
g:\Gamma\toR
H1(\Omega)
H1(\Omega)=\{f\inL2(\Omega):\nablaf\inL2(\Omega)\}.
lVg
lV
lVg=\{u\inH1(\Omega):u=gon\Gamma\},
lV=
1(\Omega) | |
H | |
0 |
=\{v\inH1(\Omega):v=0on\Gamma\}.
The variational formulation of the boundary value problem defined above reads:
findu\inlVgsuchthat:a(v,u)=f(v)\forallv\inlV
being
a(v,u)
a(v,u)=(v,lLu)
f(v)=(v,f)
lV
( ⋅ , ⋅ )
L2(\Omega)
lL*
lL
l(v,lLu)=(lL*v,u)\forallu,v\inlV
In VMS approach, the function spaces are decomposed through a multiscale direct sum decomposition for both
lVg
lV
lV=\bar{lV} ⊕ lV'
lVg=\bar{lVg} ⊕ lVg'.
Hence, an overlapping sum decomposition is assumed for both
u
v
u=\bar{u}+u'andv=\bar{v}+v'
where
\baru
u'
\bar{u}\in\bar{lVg}
{u'}\in{lVg}'
\bar{v}\in\bar{lV}
v'\in{lV}'
\begin{align} \baru=g&&on\Gamma&&\forall&\baru\in\bar{l{Vg}},\\ u'=0&&on\Gamma&&\forall&u'\in{l{Vg}}',\\ \barv=0&&on\Gamma&&\forall&\barv\in\bar{l{V}},\\ v'=0&&on\Gamma&&\forall&v'\in{l{V}}'. \end{align}
With this in mind, the variational form can be rewritten as
a(\barv+v',\baru+u')=f(\barv+v')
and, by using bilinearity of
a( ⋅ , ⋅ )
f( ⋅ )
a(\barv,\baru)+a(\barv,u')+a(v',\baru)+a(v',u')=f(\barv)+f(v').
Last equation, yields to a coarse scale and a fine scale problem:
find\baru\in\bar{lV}gandu'\inlV'suchthat:
\begin{align} &&a(\barv,\baru)+a(\barv,u')&=f(\barv)&&\forall\barv\in\bar{lV}&coarse-scaleproblem\\ &&a(v',\baru)+a(v',u')&=f(v')&&\forallv'\in{lV}'&fine-scaleproblem\\ \end{align}
a(v,u)=(v,lLu)
f(v)=(v,f)
find\baru\in\bar{lV}gandu'\inlV'suchthat:
\begin{align} &&(\barv,lL\baru)+(\barv,lLu')&=(\barv,f)&&\forall\barv\in\bar{lV},\\ &&(v',lL\baru)+(v',lLu')&=(v',f)&&\forallv'\in{lV}'.\\ \end{align}
(v',lLu')=-(v',lL\baru-f)
\begin{cases} lLu'=-(lL\baru-f)&in\Omega\\ u'=0&on\Gamma \end{cases}
u'
lL\baru-f
lL\baru-f
G:\Omega x \Omega\toRwithG=0on\Gamma x \Gamma
u'(y)=-\int\OmegaG(x,y)(lL\baru-f)(x)d\Omegax\forally\in\Omega.
\delta
\forally\in\Omega
\begin{cases} lL*G(x,y)=\delta(x-y)&in\Omega\\ G(x,y)=0&on\Gamma \end{cases}
u'
lM
-lL-1
u'=lM(lL\baru-f),
lM ≈ -lL-1
(\barv,lLu')=(lL*\barv,u')=(lL*\barv,lM(lL\baru-f)).
lM
-lL-1
\tilde{\baru} ≈ \baru
\baru
find\tilde{\baru}\inl{\barV}g: a(\barv,\tilde{\baru})+(lL*\barv,lM(lL\tilde{\baru}-f))=(\barv,f) \forall\bar{v}\inl{\barV},
(lL*\barv,lM(lL\tilde{\baru}-f))=-\int\Omega\int\Omega(lL*\barv)(y)G(x,y)(lL\tilde{\baru}-f)(x)d\Omegaxd\Omegay.
B(\barv,\tilde{\baru},G)=a(\barv,\tilde{\baru})+(lL*\barv,lM(lL\tilde{\baru}))
L(\barv,G)=(\barv,f)+(lL*\barv,lMf)
find\tilde{\baru}\inl{\barV}g:B(\barv,\tilde{\baru},G)=L(\barv,G)\forall\bar{v}\inl{\barV}.
lM
G
\bar{lV}g
\bar{lV}
\bar{lV}g\equiv
lV | |
gh |
:=lVg\cap
h(\Omega) | |
X | |
r |
\bar{lV}\equivlVh:=lV\cap
r(\Omega), | |
X | |
h |
h(\Omega) | |
X | |
r |
r\geq1
\Omega
l{V}g'
l{V}'
l{V} | |
gh |
l{V}h
Let
uh\in
lV | |
gh |
vh\inlVh
\tilde{\baru}
{\barv}
\tildeG
\tilde{lM}
G
{lM}
finduh\in
lV | |
gh |
:B(vh,uh,\tildeG)=L(vh,\tildeG)\forall{v}h\inl{V}h
finduh\in
lV | |
gh |
:a(vh,uh)+(lL*vh,l{\tilde{M}}(lL{uh}-f))=(vh,f)\forall{v}h\inl{V}h
Consider an advection–diffusion problem:
\begin{cases} -\mu\Deltau+\boldsymbolb ⋅ \nablau=f&in\Omega\\ u=0&on\partial\Omega \end{cases}
\mu\inR
\mu>0
\boldsymbolb\inRd
1 | |
l{V}=H | |
0(\Omega) |
u\inlV
\boldsymbolb\in[L2(\Omega)]d
f\inL2(\Omega)
lL=lLdiff+lLadv
lLdiff=-\mu\Delta
lLadv=\boldsymbolb ⋅ \nabla
findu\inlV: a(v,u)=(f,v) \forallv\inlV,
a(v,u)=(\nablav,\mu\nablau)+(v,\boldsymbolb ⋅ \nablau).
lVh=lV\cap
r | |
X | |
h |
\Omegah=
N | |
cup | |
k=1 |
\Omegak
N
uh\inlVh
The standard Galerkin formulation of this problem reads[8]
finduh\inlVh: a(vh,uh)=(f,vh) \forallv\inlV,
finduh\inlVh:a(vh,uh)+lLh(uh,f;vh)=(f,vh)\forallvh\inlVh
lLh
lLh(u,f;vh)=0\forallvh\inlVh.
lLh
(Lvh,\tau(lLuh-
f)) | |
\Omegah |
L
L= \begin{cases} +lL&&Galerkin/leastsquares(GLS)\\ +lLadv&&StreamlineUpwindPetrov-Galerkin(SUPG)\\ -lL*&&Multiscale\\ \end{cases}
\tau
L=-lL*
\tau=-\tilde{lM} ≈ -lM
\tau\delta(x-y)=\tildeG(x,y) ≈ G(x,y),
\tau
\tau=
1 | |
|\Omegak| |
\int | |
\Omegak |
\int | |
\Omegak |
G(x,y)d\Omegaxd\Omegay.
For the 1-d advection diffusion problem, with an appropriate choice of basis functions and
\tau
\tau
\taue=-
lL(\tilde{z | |
, |
uh)e}{(\phieLh(u
*(\tilde{z})) | |
e} |
\taue
lL(\tilde{z},uh)e
\tilde{z}
la(\tilde{z},v)+Lh(\tilde{z},v)=
\int | |
\Omegae |
vdx
\tau
\int\Omegaudx
The idea of VMS turbulence modeling for Large Eddy Simulations(LES) of incompressible Navier–Stokes equations was introduced by Hughes et al. in 2000 and the main idea was to use - instead of classical filtered techniques - variational projections.[11] [12]
\rho
\Omega\inRd
\partial\Omega=\GammaD\cup\GammaN
\GammaD
\GammaN
\GammaD\cap\GammaN=\emptyset
\begin{cases} \rho\dfrac{\partial\boldsymbolu}{\partialt}+\rho(\boldsymbolu ⋅ \nabla)\boldsymbolu-\nabla ⋅ \boldsymbol\sigma(\boldsymbolu,p)=\boldsymbolf&in\Omega x (0,T)\\ \nabla ⋅ \boldsymbolu=0&in\Omega x (0,T)\\ \boldsymbolu=\boldsymbolg&on\GammaD x (0,T)\\ \sigma(\boldsymbolu,p)\boldsymbol{\hatn}=\boldsymbolh&on\GammaN x (0,T)\\ \boldsymbolu(0)=\boldsymbolu0&in\Omega x \{0\} \end{cases}
\boldsymbolu
p
\boldsymbolf
\boldsymbol{\hatn}
\GammaN
\boldsymbol\sigma(\boldsymbolu,p)
\boldsymbol\sigma(\boldsymbolu,p)=-p\boldsymbolI+2\mu\boldsymbol\epsilon(\boldsymbolu).
\mu
\boldsymbolI
\boldsymbol\epsilon(\boldsymbolu)
\boldsymbol\epsilon(\boldsymbolu)=
1 | |
2 |
((\nabla\boldsymbolu)+(\nabla\boldsymbolu)T).
\boldsymbolg
\boldsymbolh
\boldsymbolu0
In order to find a variational formulation of the Navier–Stokes equations, consider the following infinite-dimensional spaces:[8]
lVg=\{\boldsymbolu\in[H1(\Omega)]d:\boldsymbolu=\boldsymbolgon\GammaD\},
lV0=
d=\{ | |
[H | |
0(\Omega)] |
\boldsymbolu\in[H1(\Omega)]d:\boldsymbolu=\boldsymbol0on\GammaD\},
lQ=L2(\Omega).
\boldsymbollVg=lVg x lQ
\boldsymbollV0=lV0 x lQ
\boldsymbolu0
\forallt\in(0,T), find(\boldsymbolu,p)\in\boldsymbollVgsuchthat
\begin{align} (\boldsymbolv,\rho\dfrac{\partial\boldsymbolu}{\partialt})+a(\boldsymbolv,\boldsymbolu)+c(\boldsymbolv,\boldsymbolu,\boldsymbolu)-b(\boldsymbolv,p)+b(\boldsymbolu,q)=(\boldsymbolv,\boldsymbolf)+(\boldsymbolv,\boldsymbol
h) | |
\GammaN |
\forall(\boldsymbolv,q)\in\boldsymbollV0 \end{align}
( ⋅ , ⋅ )
L2(\Omega)
( ⋅ ,
⋅ ) | |
\GammaN |
2(\Gamma | |
L | |
N) |
a( ⋅ , ⋅ )
b( ⋅ , ⋅ )
c( ⋅ , ⋅ , ⋅ )
\begin{align} a(\boldsymbolv,\boldsymbolu)=&(\nabla\boldsymbolv,\mu((\nabla\boldsymbolu)+(\nabla\boldsymbolu)T)),\\ b(\boldsymbolv,q)=&(\nabla ⋅ \boldsymbolv,q),\\ c(\boldsymbolv,\boldsymbolu,\boldsymbolu)=&(\boldsymbolv,\rho(\boldsymbolu ⋅ \nabla)\boldsymbolu).\end{align}
In order to discretize in space the Navier–Stokes equations, consider the function space of finite element
h | |
X | |
r |
=\{uh\inC0(\overline\Omega):
h| | |
u | |
k |
\inPr, \forallk\in\Tauh\}
r\geq1
\Omega
\Tauh
hk
\forallk\in\Tauh
\boldsymbollV
\boldsymbollVg
\boldsymbollV0
\boldsymbollV=\boldsymbollVh ⊕ \boldsymbollV',
\boldsymbollVh=
lV | |
gh |
x lQor\boldsymbollVh=
lV | |
0h |
x lQ
\boldsymbollV'=lVg' x lQor\boldsymbollV'=lV0' x lQ
lV | |
gh |
=lVg\cap
h | |
X | |
r |
lV | |
0h |
=lV0\cap
h | |
X | |
r |
lQh=lQ\cap
h | |
X | |
r |
\begin{align} &\boldsymbolu=\boldsymboluh+\boldsymbolu'andp=ph+p'\\ &\boldsymbolv=\boldsymbolvh+\boldsymbolv' andq=qh+q'\end{align}
\begin{align} \boldsymbolu' ≈ &-\tauM(\boldsymboluh)\boldsymbolrM(\boldsymboluh,ph),\\ p' ≈ &-\tauC(\boldsymboluh)\boldsymbolrC(\boldsymboluh). \end{align}
\boldsymbolrM(\boldsymboluh,ph)
\boldsymbolrC(\boldsymboluh)
\begin{align} \boldsymbolrM(\boldsymboluh,ph)=&\rho\dfrac{\partial\boldsymboluh}{\partialt}+\rho(\boldsymboluh ⋅ \nabla)\boldsymboluh-\nabla ⋅ \boldsymbol\sigma(\boldsymboluh,ph)-\boldsymbolf,\\ \boldsymbolrC(\boldsymboluh)=&\nabla ⋅ \boldsymboluh, \end{align}
\begin{align} \tauM(\boldsymboluh)=& (
\sigma2\rho2 | |
\Deltat2 |
+
\rho2 | ||||||
|
|\boldsymboluh|2+
\mu2 | ||||||
|
-1/2 | |
C | |
r ) |
,\\ \tauC(\boldsymboluh)=&
| |||||||
\tauM(\boldsymboluh) |
, \end{align}
Cr=60 ⋅ 2r-2
r
\sigma
\Deltat
\boldsymbolu0
\forallt\in(0,T), find\boldsymbolUh=\{\boldsymboluh,ph\}\in\boldsymbol
lV | |
gh |
suchthatA(\boldsymbolVh,\boldsymbolUh)=F(\boldsymbolVh) \forall\boldsymbolVh=\{\boldsymbolvh,qh\}\in\boldsymbol
lV | |
0h |
,
A(\boldsymbolVh,\boldsymbolUh)=ANS(\boldsymbolVh,\boldsymbolUh)+AVMS(\boldsymbolVh,\boldsymbolUh),
F(\boldsymbolVh)=(\boldsymbolv,\boldsymbolf)+(\boldsymbolv,\boldsymbol
h) | |
\GammaN |
.
ANS( ⋅ , ⋅ )
AVMS( ⋅ , ⋅ )
\begin{align} ANS(\boldsymbolVh,\boldsymbolUh)=&(\boldsymbolvh,\rho\dfrac{\partial\boldsymboluh}{\partialt})+a(\boldsymbolvh,\boldsymboluh)+c(\boldsymbolvh,\boldsymboluh,\boldsymboluh)-b(\boldsymbolvh,ph)+b(\boldsymboluh,qh),\\ AVMS(\boldsymbolVh,\boldsymbolUh)=&\underbrace{(\rho\boldsymboluh ⋅ \nabla\boldsymbolvh+\nablaqh,\tauM(\boldsymboluh)\boldsymbolrM(\boldsymboluh,ph))}SUPG-\underbrace{(\nabla ⋅ \boldsymbolvh,\tauc(\boldsymboluh)\boldsymbolrC(\boldsymboluh))+(\rho\boldsymboluh ⋅ (\nabla\boldsymboluh)T,\tauM(\boldsymboluh)\boldsymbolrM(\boldsymboluh,ph) )}VMS-\underbrace{(\nabla\boldsymbolvh,\tauM(\boldsymboluh)\boldsymbolrM(\boldsymboluh,ph) ⊗ \tauM(\boldsymboluh)\boldsymbolrM(\boldsymboluh,ph))}LES. \end{align}
ANS( ⋅ , ⋅ )
AVMS( ⋅ , ⋅ )