The Vanna–Volga method is a mathematical tool used in finance. It is a technique for pricing first-generation exotic options in foreign exchange market (FX) derivatives.
l{V}
rm{Vanna}=
\partial l{V | |
Similarly, the Volga is the sensitivityof the Vega with respect to a change of the implied volatility
\sigma
rm{Volga}= | \partiall{V |
\sigma(K)
K0
\sigma0
\sigma(Kc/p)
Kc/p
\Delta call(Kc,\sigma(Kc))=1/4
\Delta put(Kp,\sigma(Kp))=-1/4
\Deltacall/put(K,\sigma)
\begin{align} rm{ATM}(K0)&=
12 | |
\left(rm{Call}(K |
0,\sigma0)+rm{Put}(K0,\sigma0)\right)\\ rm{RR}(Kc,Kp)&=rm{Call}(Kc,\sigma(Kc))-rm{Put}(Kp,\sigma(Kp))\\ rm{BF}(Kc,Kp)&=
12 | |
\left(rm{Call}(K |
c,\sigma(Kc))+rm{Put}(Kp,\sigma(Kp))\right)-rm{ATM}(K0) \end{align}
with
rm{Call}(K,\sigma)
The simplest formulation of the Vanna–Volga method suggests that theVanna–Volga price
XVV
X
X\rm=XBS+\underbrace{
rm{X | |
vanna |
where by
X
\begin{align} RRcost&=\left[rm{Call}(Kc,\sigma(Kc))-rm{Put}(Kp,\sigma(Kp))\right]-\left[rm{Call}(Kc,\sigma0)-rm{Put}(Kp,\sigma0)\right]\\ BFcost&=
12 | |
\left[ |
rm{Call}(Kc,\sigma(Kc))+rm{Put}(Kp,\sigma(Kp))\right]-
12 | |
\left[ |
rm{Call}(Kc,\sigma0)+rm{Put}(Kp,\sigma0)\right] \end{align}
These quantities represent a smile cost, namely thedifference between the price computed with/without including thesmile effect.
The rationale behind the above formulation of the Vanna-Volga price is that one can extractthe smile cost of an exotic option by measuring thesmile cost of a portfolio designed to hedge its Vanna andVolga risks. The reason why one chooses the strategies BF and RRto do this is because they are liquid FX instruments and theycarry mainly Volga, and respectively Vanna risks. The weightingfactors
wRR
wBF
Xi=w{ATMi}+w{RRi}+ wBF{BFi}i=vega,vanna,volga
where the weightings are obtained by solving the system:
\vec{x}=A\vec{w}
with
A=\begin{pmatrix} ATMvega&RRvega&BFvega\\ ATMvanna&RRvanna&BFvanna\\ ATMvolga&RRvolga&BFvolga\end{pmatrix}
\vec{w}=\begin{pmatrix}wATM\\ wRR\ wBF\end{pmatrix}
\vec{x}=\begin{pmatrix}Xvega\\ Xvanna\ Xvolga\end{pmatrix}
Given this replication, the Vanna–Volga method adjusts the BSprice of an exotic option by the smile cost of the aboveweighted sum (note that the ATM smile cost is zero byconstruction):
\begin{align}X\rm&=XBS+wRR({RR}mkt-{RR}BS)+ wBF({BF}mkt-{BF}BS)\\ &=XBS+\vec{x}T(AT)-1\vec{I}\\ &=XBS+ Xvega\Omegavega+Xvanna\Omegavanna+Xvolga\Omegavolga\\ \end{align}
where
\vec{I}=\begin{pmatrix} 0\\ {RR}mkt-{RR}BS\\ {BF}mkt-{BF}BS\end{pmatrix}
and
\begin{pmatrix} \Omegavega\\ \Omegavanna\\ \Omegavolga\end{pmatrix}=(AT)-1\vec{I}
The quantities
\Omegai
XVV
\begin{align} X\rm&=XBS+pvannaXvanna\Omegavanna+pvolgaXvolga\Omegavolga\end{align}
The Vega contribution turns out to beseveral orders of magnitude smaller than the Vanna and Volga termsin all practical situations, hence one neglects it.
The terms
pvanna
p volga
B
S0
B=S0
\begin{align} p\rm&=a\gamma\ p\rm&=b+c\gamma\end{align}
where
\gamma\in[0,1]
\begin{align} \gamma=0 &{for} S0\toB\\ \gamma=1 &{for} |S0-B|\gg0\end{align}
The coefficients
a,b,c
\gamma
The survival probability
psurv\in[0,1]
\{Bi\}
psurv=E[
1 | |
St<B,trm{tod |
<t<trm{mat
where
NT(B)
DF(trm{tod
The first exit time (FET) is the minimum between: (i) the time inthe future when the spot is expected to exit a barrier zone beforematurity, and (ii) maturity, if the spot has not hit any of thebarrier levels up to maturity. That is, if we denote the FET by
u(St,t)
u(St,t)=
\{\phi,T\}
\phi=rm{inf}\{\ell\in[0,T)\}
St+\ell>H
St+\ell<L
L,H
St
The first-exit time is the solution of the following PDE
\partial u(S,t) | |
\partialt |
+
12\sigma | |
2 |
S2
\partial2u(S,t) | |
\partial S2 |
+\muS
\partialu(S,t) | |
\partialS |
=0
This equation is solved backwardsin time starting from the terminal condition
u(S,T)=T
T
u(L,t')=u(H,t')=t'
H\ggS0
L\ll S0
\mu