Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r, k).
There are two cases in which the van der Waerden number W(r, k) is easy to compute: first, when the number of colors r is equal to 1, one has W(1, k) = k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, when the length k of the forced arithmetic progression is 2, one has W(r, 2) = r + 1, since one may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but using any color twice creates a length-2 arithmetic progression. (For example, for r = 3, the longest coloring that avoids an arithmetic progression of length 2 is RGB.) There are only seven other van der Waerden numbers that are known exactly. The table below gives exact values and bounds for values of W(r, k); values are taken from Rabung and Lotts except where otherwise noted.[1]
k\r | 2 colors | 3 colors | 4 colors | 5 colors | 6 colors | |
---|---|---|---|---|---|---|
3 | 9 | 27 | 76 | >170 | >225 | |
4 | 35 | 293 | >1,048 | >2,254 | >9,778 | |
5 | 178 | >2,173 | >17,705 | >98,741[2] | >98,748 | |
6 | 1,132 | >11,191 | >157,209[3] | >786,740 | >1,555,549 | |
7 | >3,703 | >48,811 | >2,284,751 | >15,993,257 | >111,952,799 | |
8 | >11,495 | >238,400 | >12,288,155 | >86,017,085 | >602,119,595 | |
9 | >41,265 | >932,745 | >139,847,085 | >978,929,595 | >6,852,507,165 | |
10 | >103,474 | >4,173,724 | >1,189,640,578 | >8,327,484,046 | >58,292,388,322 | |
11 | >193,941 | >18,603,731 | >3,464,368,083 | >38,108,048,913 | >419,188,538,043 |
Some lower bound colorings computed using SAT approach by Marijn J.H. Heule can be found on github project page.
Van der Waerden numbers with r ≥ 2 are bounded above by
W(r,k)\le
| |||||||||||||
2 |
For a prime number p, the 2-color van der Waerden number is bounded below by
p ⋅ 2p\leW(2,p+1),
One sometimes also writes w(r; k1, k2, ..., kr) to mean the smallest number w such that any coloring of the integers with r colors contains a progression of length ki of color i, for some i. Such numbers are called off-diagonal van der Waerden numbers. Thus W(r, k) = w(r; k, k, ..., k).Following is a list of some known van der Waerden numbers:
w(r;k1, k2, …, kr) | Value | Reference | |
---|---|---|---|
w(2; 3,3) | 9 | Chvátal [6] | |
w(2; 3,4) | 18 | Chvátal | |
w(2; 3,5) | 22 | Chvátal | |
w(2; 3,6) | 32 | Chvátal | |
w(2; 3,7) | 46 | Chvátal | |
w(2; 3,8) | 58 | Beeler and O'Neil [7] | |
w(2; 3,9) | 77 | Beeler and O'Neil | |
w(2; 3,10) | 97 | Beeler and O'Neil | |
w(2; 3,11) | 114 | Landman, Robertson, and Culver [8] | |
w(2; 3,12) | 135 | Landman, Robertson, and Culver | |
w(2; 3,13) | 160 | Landman, Robertson, and Culver | |
w(2; 3,14) | 186 | Kouril [9] | |
w(2; 3,15) | 218 | Kouril | |
w(2; 3,16) | 238 | Kouril | |
w(2; 3,17) | 279 | Ahmed [10] | |
w(2; 3,18) | 312 | Ahmed | |
w(2; 3,19) | 349 | Ahmed, Kullmann, and Snevily [11] | |
w(2; 3,20) | 389 | Ahmed, Kullmann, and Snevily (conjectured); Kouril [12] (verified) | |
w(2; 4,4) | 35 | Chvátal | |
w(2; 4,5) | 55 | Chvátal | |
w(2; 4,6) | 73 | Beeler and O'Neil | |
w(2; 4,7) | 109 | Beeler [13] | |
w(2; 4,8) | 146 | Kouril | |
w(2; 4,9) | 309 | Ahmed [14] | |
w(2; 5,5) | 178 | Stevens and Shantaram [15] | |
w(2; 5,6) | 206 | Kouril | |
w(2; 5,7) | 260 | Ahmed [16] | |
w(2; 6,6) | 1132 | Kouril and Paul [17] | |
w(3; 2, 3, 3) | 14 | Brown [18] | |
w(3; 2, 3, 4) | 21 | Brown | |
w(3; 2, 3, 5) | 32 | Brown | |
w(3; 2, 3, 6) | 40 | Brown | |
w(3; 2, 3, 7) | 55 | Landman, Robertson, and Culver | |
w(3; 2, 3, 8) | 72 | Kouril | |
w(3; 2, 3, 9) | 90 | Ahmed [19] | |
w(3; 2, 3, 10) | 108 | Ahmed | |
w(3; 2, 3, 11) | 129 | Ahmed | |
w(3; 2, 3, 12) | 150 | Ahmed | |
w(3; 2, 3, 13) | 171 | Ahmed | |
w(3; 2, 3, 14) | 202 | Kouril [20] | |
w(3; 2, 4, 4) | 40 | Brown | |
w(3; 2, 4, 5) | 71 | Brown | |
w(3; 2, 4, 6) | 83 | Landman, Robertson, and Culver | |
w(3; 2, 4, 7) | 119 | Kouril | |
w(3; 2, 4, 8) | 157 | Kouril | |
w(3; 2, 5, 5) | 180 | Ahmed | |
w(3; 2, 5, 6) | 246 | Kouril | |
w(3; 3, 3, 3) | 27 | Chvátal | |
w(3; 3, 3, 4) | 51 | Beeler and O'Neil | |
w(3; 3, 3, 5) | 80 | Landman, Robertson, and Culver | |
w(3; 3, 3, 6) | 107 | Ahmed | |
w(3; 3, 4, 4) | 89 | Landman, Robertson, and Culver | |
w(3; 4, 4, 4) | 293 | Kouril | |
w(4; 2, 2, 3, 3) | 17 | Brown | |
w(4; 2, 2, 3, 4) | 25 | Brown | |
w(4; 2, 2, 3, 5) | 43 | Brown | |
w(4; 2, 2, 3, 6) | 48 | Landman, Robertson, and Culver | |
w(4; 2, 2, 3, 7) | 65 | Landman, Robertson, and Culver | |
w(4; 2, 2, 3, 8) | 83 | Ahmed | |
w(4; 2, 2, 3, 9) | 99 | Ahmed | |
w(4; 2, 2, 3, 10) | 119 | Ahmed | |
w(4; 2, 2, 3, 11) | 141 | Schweitzer [21] | |
w(4; 2, 2, 3, 12) | 163 | Kouril | |
w(4; 2, 2, 4, 4) | 53 | Brown | |
w(4; 2, 2, 4, 5) | 75 | Ahmed | |
w(4; 2, 2, 4, 6) | 93 | Ahmed | |
w(4; 2, 2, 4, 7) | 143 | Kouril | |
w(4; 2, 3, 3, 3) | 40 | Brown | |
w(4; 2, 3, 3, 4) | 60 | Landman, Robertson, and Culver | |
w(4; 2, 3, 3, 5) | 86 | Ahmed | |
w(4; 2, 3, 3, 6) | 115 | Kouril | |
w(4; 3, 3, 3, 3) | 76 | Beeler and O'Neil | |
w(5; 2, 2, 2, 3, 3) | 20 | Landman, Robertson, and Culver | |
w(5; 2, 2, 2, 3, 4) | 29 | Ahmed | |
w(5; 2, 2, 2, 3, 5) | 44 | Ahmed | |
w(5; 2, 2, 2, 3, 6) | 56 | Ahmed | |
w(5; 2, 2, 2, 3, 7) | 72 | Ahmed | |
w(5; 2, 2, 2, 3, 8) | 88 | Ahmed | |
w(5; 2, 2, 2, 3, 9) | 107 | Kouril | |
w(5; 2, 2, 2, 4, 4) | 54 | Ahmed | |
w(5; 2, 2, 2, 4, 5) | 79 | Ahmed | |
w(5; 2, 2, 2, 4, 6) | 101 | Kouril | |
w(5; 2, 2, 3, 3, 3) | 41 | Landman, Robertson, and Culver | |
w(5; 2, 2, 3, 3, 4) | 63 | Ahmed | |
w(5; 2, 2, 3, 3, 5) | 95 | Kouril | |
w(6; 2, 2, 2, 2, 3, 3) | 21 | Ahmed | |
w(6; 2, 2, 2, 2, 3, 4) | 33 | Ahmed | |
w(6; 2, 2, 2, 2, 3, 5) | 50 | Ahmed | |
w(6; 2, 2, 2, 2, 3, 6) | 60 | Ahmed | |
w(6; 2, 2, 2, 2, 4, 4) | 56 | Ahmed | |
w(6; 2, 2, 2, 3, 3, 3) | 42 | Ahmed | |
w(7; 2, 2, 2, 2, 2, 3, 3) | 24 | Ahmed | |
w(7; 2, 2, 2, 2, 2, 3, 4) | 36 | Ahmed | |
w(7; 2, 2, 2, 2, 2, 3, 5) | 55 | Ahmed | |
w(7; 2, 2, 2, 2, 2, 3, 6) | 65 | Ahmed | |
w(7; 2, 2, 2, 2, 2, 4, 4) | 66 | Ahmed | |
w(7; 2, 2, 2, 2, 3, 3, 3) | 45 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 2, 3, 3) | 25 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 2, 3, 4) | 40 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 2, 3, 5) | 61 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 2, 3, 6) | 71 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 2, 4, 4) | 67 | Ahmed | |
w(8; 2, 2, 2, 2, 2, 3, 3, 3) | 49 | Ahmed | |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3) | 28 | Ahmed | |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4) | 42 | Ahmed | |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5) | 65 | Ahmed | |
w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3) | 52 | Ahmed | |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 31 | Ahmed | |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 45 | Ahmed | |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 5) | 70 | Ahmed | |
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 33 | Ahmed | |
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 48 | Ahmed | |
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 35 | Ahmed | |
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 52 | Ahmed | |
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 37 | Ahmed | |
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 55 | Ahmed | |
w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 39 | Ahmed | |
w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 42 | Ahmed | |
w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 44 | Ahmed | |
w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 46 | Ahmed | |
w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 48 | Ahmed | |
w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 50 | Ahmed | |
w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 51 | Ahmed |
Van der Waerden numbers are primitive recursive, as proved by Shelah;[22] in fact he proved that they are (at most) on the fifth level
l{E}5