In mathematics and numerical analysis, the van Wijngaarden transformation is a variant on the Euler transform used to accelerate the convergence of an alternating series.
One algorithm to compute Euler's transform runs as follows:
Compute a row of partial sums and form rows of averages between neighbors The first columnthen contains the partial sums of the Euler transform.sj,0
Adriaan van Wijngaarden's contribution was to point out that it is better not to carry this procedure through to the very end, but to stop two-thirds of the way.[1] If
a0,a1,\ldots,a12
s8,4
s12,0
-4
For a simple-but-concrete example, recall the Leibniz formula for pi The algorithm described above produces the following table:
+}.)^:n+/\(_1^n)*%1+2*n=.i.13 highlighted values are final results|-| 1.00000000 || 0.66666667 || 0.86666667 || 0.72380952 || 0.83492063 || 0.74401154 || 0.82093462 || 0.75426795 || 0.81309148 || 0.76045990 || 0.80807895 || 0.76460069 || 0.80460069|-| 0.83333333 || 0.76666667 || 0.79523810 || 0.77936508 || 0.78946609 || 0.78247308 || 0.78760129 || 0.78367972 || 0.78677569 || 0.78426943 || 0.78633982 || 0.78460069|-| 0.80000000 || 0.78095238 || 0.78730159 || 0.78441558 || 0.78596959 || 0.78503719 || 0.78564050 || 0.78522771 || 0.78552256 || 0.78530463 || 0.78547026|-| 0.79047619 || 0.78412698 || 0.78585859 || 0.78519259 || 0.78550339 || 0.78533884 || 0.78543410 || 0.78537513 || 0.78541359 || 0.78538744|-| 0.78730159 || 0.78499278 || 0.78552559 || 0.78534799 || 0.78542111 || 0.78538647 || 0.78540462 || 0.78539436 || 0.78540052|-| 0.78614719 || 0.78525919 || 0.78543679 || 0.78538455 || 0.78540379 || 0.78539555 || 0.78539949 || 0.78539744|-| 0.78570319 || 0.78534799 || 0.78541067 || 0.78539417 || 0.78539967 || 0.78539752 || 0.78539847|-| 0.78552559 || 0.78537933 || 0.78540242 || 0.78539692 || 0.78539860 || 0.78539799|-| 0.78545246 || 0.78539087 || 0.78539967 || 0.78539776 || 0.78539829|-| 0.78542166 || 0.78539527 || 0.78539871 || 0.78539803|-| 0.78540847 || 0.78539699 || 0.78539837|-| 0.78540273 || 0.78539768|-| 0.78540021|}
These correspond to the following algorithmic outputs:
Naïve partial sums | s0,12 | 0.8046006... | ||
Euler transform | s12,0 | 0.7854002... | ||
van Wijngaarden result | s8,4 | 0.7853982... |
'b11.8'8!:2-:&(