Vakhitov–Kolokolov stability criterion explained

u(x,t)=

-i\omegat
\phi
\omega(x)e
with frequency

\omega

has the form
d
d\omega

Q(\omega)<0,

where

Q(\omega)

is the charge (or momentum) of the solitary wave
-i\omegat
\phi
\omega(x)e
,conserved by Noether's theorem due to U(1)-invariance of the system.

Original formulation

Originally, this criterion was obtained for the nonlinear Schrödinger equation,

i\partial
\partialt

u(x,t)=-

\partial2
\partialx2

u(x,t)+g(|u(x,t)|2)u(x,t),

where

x\in\R

,

t\in\R

, and

g\inCinfty(\R)

is a smooth real-valued function. The solution

u(x,t)

is assumed to be complex-valued. Since the equation is U(1)-invariant, by Noether's theorem, it has an integral of motion,Q(u) = \frac \int_|u(x,t)|^2\,dx, which is called charge or momentum, depending on the model under consideration.For a wide class of functions

g

, the nonlinear Schrödinger equation admits solitary wave solutions of the form

u(x,t)=

-i\omegat
\phi
\omega(x)e
, where

\omega\in\R

and

\phi\omega(x)

decays for large

x

(one often requires that

\phi\omega(x)

belongs to the Sobolev space

H1(\Rn)

). Usually such solutions exist for

\omega

from an interval or collection of intervals of a real line.The Vakhitov–Kolokolov stability criterion,[1] [2] [3] [4]
d
d\omega

Q(\phi\omega)<0,

is a condition of spectral stability of a solitary wave solution. Namely, if this condition is satisfied at a particular value of

\omega

, then the linearization at the solitary wave with this

\omega

has no spectrum in the right half-plane.

This result is based on an earlier work[5] by Vladimir Zakharov.

Generalizations

This result has been generalized to abstract Hamiltonian systems with U(1)-invariance.[6] It was shown that under rather general conditions the Vakhitov–Kolokolov stabilitycriterion guarantees not only spectral stabilitybut also orbital stability of solitary waves.

The stability condition has been generalized[7] to traveling wave solutionsto the generalized Korteweg–de Vries equation of the form

\partialtu+

3
\partial
x

u+\partialxf(u)=0

.

The stability condition has also been generalized to Hamiltonian systems with a more general symmetry group.[8]

See also

References

  1. Колоколов, А. А.. Устойчивость основной моды нелинейного волнового уравнения в кубичной среде. Прикладная механика и техническая физика. 3. 1973. 152–155.
  2. A.A. Kolokolov. Stability of the dominant mode of the nonlinear wave equation in a cubic medium. Journal of Applied Mechanics and Technical Physics. 14. 3. 1973. 426–428. 10.1007/BF00850963. 1973JAMTP..14..426K. 123792737.
  3. Вахитов, Н. Г. . Колоколов, А. А. . amp . Стационарные решения волнового уравнения в среде с насыщением нелинейности. Известия высших учебных заведений. Радиофизика. 16. 1973. 1020–1028 .
  4. N.G. Vakhitov . A.A. Kolokolov. amp . Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quantum Electron.. 16. 7. 1973. 783–789. 10.1007/BF01031343. 1973R&QE...16..783V . 123386885.
  5. Vladimir E. Zakharov. Instability of Self-focusing of Light. Zh. Eksp. Teor. Fiz.. 1967. 53. 1735–1743. 1968JETP...26..994Z.
  6. Manoussos Grillakis . Jalal Shatah . Walter Strauss . amp . Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal.. 74. 1987. 160–197. 10.1016/0022-1236(87)90044-9. free.
  7. Jerry Bona . Panagiotis Souganidis . Walter Strauss . amp . Stability and instability of solitary waves of Korteweg-de Vries type. Proceedings of the Royal Society A. 411. 1987. 1841. 395–412. 10.1098/rspa.1987.0073. 1987RSPSA.411..395B . 120894859 .
  8. Manoussos Grillakis . Jalal Shatah . Walter Strauss . amp . Stability theory of solitary waves in the presence of symmetry. J. Funct. Anal.. 94. 2 . 1990. 308–348. 10.1016/0022-1236(90)90016-E . free.