This page compares the properties of several typical utility functions of divisible goods. These functions are commonly used as examples in consumer theory.
The functions are ordinal utility functions, which means that their properties are invariant under positive monotone transformation. For example, the Cobb–Douglas function could also be written as:
wxlog{x}+wylog{y}
The utility functions are exemplified for two goods,
x
y
px
py
wx
wy
r
uy
y
I
Name | Function | Indifference curves | Good type | Example | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min\left({x\overwx},{y\overwy}\right) | hyperbolic: I\overwxpx+wypy | ? | L-shapes | Weak | Weak | Yes | Perfect complements | Left and right shoes | ||||||||||||||||||||||||
| hyperbolic:
{I\overpx} | I\over
| hyperbolic | Strong | Strong | Yes | Apples and socks | |||||||||||||||||||||||||
{{x\overwx}+{y\overwy}} | "Step function" correspondence: only goods with minimum {wipi} | ? | Straight lines | Strong | Weak | Yes | Potatoes of two different farms | |||||||||||||||||||||||||
x+uy(y) | Demand for y uy'(y)=py/px | v(p)+I | Parallel curves | Strong, if uy | No | Money ( x y | ||||||||||||||||||||||||||
Maximum | \left({x\overwx},{y\overwy}\right) | Discontinuous step function: only one good with minimum {wipi} | ? | ר-shapes | Weak | Concave | Yes | Substitutes and interfering | Two simultaneous movies | |||||||||||||||||||||||
\left(\left({x\over
+\left({y\over
1/r | ? | Leontief, Cobb–Douglas, Linear and Maximum are special cases when r=-infty,0,1,infty | ||||||||||||||||||||||||||||||
wxln{x}+wyln{y}+wxyln{x}ln{y} | ? | ? | Cobb–Douglas is a special case when wxy=0 | |||||||||||||||||||||||||||||
| ? | ? | ? | ? | ? | ? | ? | ? |
This page has been greatly improved thanks to comments and answers in Economics StackExchange.