In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.
The following notation and notions are used, where
l{R}:X\rightrightarrowsY
S
X
S
\operatorname{aff}S
\operatorname{span}S.
Si:=\operatorname{aint}XS
S
X.
{}iS:=\operatorname{aint}\operatorname{aff(S-S)}S
S
S
\operatorname{aff}(S-S)
{}ibS:={}iS
\operatorname{span}\left(S-s0\right)
s0\inS
{}ibS:=\varnothing
S
x\inX,
x\in{}ibS
S-x
X
\cupnn(S-x)
X
l{R}
\operatorname{Dom}l{R}:=\{x\inX:l{R}(x) ≠ \varnothing\}.
l{R}
\operatorname{Im}l{R}:=\cupxl{R}(x).
A\subseteqX,
l{R}(A):=\cupxl{R}(x).
l{R}
\operatorname{gr}l{R}:=\{(x,y)\inX x Y:y\inl{R}(x)\}.
l{R}
l{R}
X x Y.
l{R}
x0,x1\inX
r\in[0,1],
rl{R}\left(x0\right)+(1-r)l{R}\left(x1\right)\subseteql{R}\left(rx0+(1-r)x1\right).
l{R}
l{R}-1:Y\rightrightarrowsX
l{R}-1(y):=\{x\inX:y\inl{R}(x)\}.
B\subseteqY,
l{R}-1(B):=\cupyl{R}-1(y).
f:X\toY
f-1:Y\rightrightarrowsX
f
f:X\rightrightarrowsY
x\mapsto\{f(x)\}.
\operatorname{int}TS
S
T,
S\subseteqT.
\operatorname{rint}S:=\operatorname{int}\operatorname{affS}S
S
\operatorname{aff}S.
The following notation and notions are used for these corollaries, where
l{R}:X\rightrightarrowsY
S
X
S
si\inS
\left(si\right)
infty | |
i=1 |
S
S
S.
S
Y
S
X
X x Y.
The implication (1)
\implies