Uranus Orbiter and Probe | |||||||||||||||||||||||||
Mission Type: | Uranus orbiter | ||||||||||||||||||||||||
Operator: | NASA | ||||||||||||||||||||||||
Mission Duration: | Cruise: 13.4 years Science phase: 4.5 years[1] | ||||||||||||||||||||||||
Payload Mass: | plus atmospheric probe | ||||||||||||||||||||||||
Dimensions: | Height: Diameter: less than | ||||||||||||||||||||||||
Power: | from 3 Mod1 Next-Generation Radioisotope thermoelectric generators | ||||||||||||||||||||||||
Launch Date: | not earlier than 2031 | ||||||||||||||||||||||||
Launch Rocket: | Falcon Heavy Expendable (proposed) | ||||||||||||||||||||||||
Launch Site: | Kennedy Space Center Launch Complex 39A (proposed) | ||||||||||||||||||||||||
Interplanetary: |
| ||||||||||||||||||||||||
Programme: | Large Strategic Science Missions Planetary Science Division | ||||||||||||||||||||||||
Previous Mission: | Mars Sample Return | ||||||||||||||||||||||||
Next Mission: | Enceladus Orbilander | ||||||||||||||||||||||||
Programme2: | Solar System Exploration program | ||||||||||||||||||||||||
Previous Mission2: | Europa Clipper | ||||||||||||||||||||||||
Next Mission2: | Enceladus Orbilander |
The Uranus Orbiter and Probe is an orbiter mission concept to study Uranus and its moons.[1] The orbiter would also deploy an atmospheric probe to characterize Uranus's atmosphere. The concept is being developed as a potential large strategic science mission for NASA. The science phase would last 4.5 years and include multiple flybys of each of the major moons.
The mission concept was selected as the highest priority Flagship-class mission by the 2023–2032 Planetary Science Decadal Survey, ahead of the Enceladus Orbilander.[2] [3] A Neptune orbiter mission concept, Neptune Odyssey, that would address many of the same scientific goals regarding ice giants was also considered, but for logistical and cost reasons a mission to Uranus was favored.
The original proposal targeted a launch in 2031 using a Falcon Heavy expendable launch vehicle with a gravity assist at Jupiter, allowing arrival at Uranus in 2044. In 2023, however, NASA announced that due to a shortfall in plutonium production a mid to late 2030s launch would be more likely.[4]
Voyager 2 is the only space probe to have visited the Uranus system, completing a flyby on January 24, 1986. The 2011-2022 Planetary Science Decadal Survey recommended a Flagship-class orbiter mission to an ice giant with priority behind what would become the Mars 2020 rover and the Europa Clipper.[5] [6] [7] Ice giants are now appreciated as a common type of exoplanet, precipitating the need for further study of ice giants in the Solar System.[8] The ice giants Uranus and Neptune were seen as unique yet equally compelling scientific targets, but a Uranus orbiter and atmospheric probe was given preference for logistical and cost reasons.[5] [7] A Uranus orbiter would logically follow Flagship-class orbiter missions undertaken at Jupiter and Saturn (Galileo and Cassini, respectively).
In 2017, prior to the 2023–2032 survey, a committee narrowed twenty mission concepts to three scenarios for Uranus and a fourth for Neptune.[8] [9] [10] [11] A mission to Neptune is viewed by some to be of greater scientific merit[12] because Triton, likely a captured Kuiper belt object and ocean world, is a more compelling astrobiology target than the moons of Uranus (though Ariel and Miranda in particular are possible ocean worlds).[13] There was also a study that considered a New Frontiers-level Uranus orbiter mission concept if a Flagship-class mission to Neptune were favored.[14] Nevertheless, again due to cost and logistical considerations including launch vehicle availability and available launch windows, the 2023–2032 Planetary Science Decadal Survey recommended the Uranus Orbiter and Probe instead of an analogous proposal for Neptune, Neptune Odyssey.[2] [3]
The orbiter paired with an atmospheric probe will address a variety of scientific questions across all aspects of the Uranus system:[2]
The atmospheric probe element of this mission would study the vertical distribution of cloud-forming molecules, thermal stratification, and wind speed as a function of depth. The 2010 mission design envisioned a probe of, less than half that of the Galileo atmospheric probe. A later design study suggested results could be significantly enhanced by adding a second probe which could be as small as in mass and about in diameter.[15]
The orbiter is proposed to carry the following instruments in the baseline concept, with additional instruments possible should they prove to be within mass, power, and cost limitations:[1]
Instrument | Heritage Instrument | Heritage Mission | |
---|---|---|---|
Magnetometer | MESSENGER Magnetometer | MESSENGER | |
Narrow-Angle Camera | Long Range Reconnaissance Imager (LORRI) | New Horizons | |
Thermal Infrared Camera | Diviner | Lunar Reconnaissance Orbiter | |
Langmuir Probe and Waves | MAVEN Langmuir Probe and Waves (LPW) | MAVEN | |
Search coil magnetometer | TRACERS search coil magnetometer (MSC) | TRACERS | |
Fast imaging plasma spectrometer | MESSENGER energetic particle and plasma spectrometer (EPPS) | MESSENGER | |
Electrostatic analyzers | Solar Wind Electrons Alphas and Protons (SWEAP) | Parker Solar Probe | |
Energetic Charged Particle Detector | EPI-Lo | Parker Solar Probe | |
Visible-Near Infrared Imaging Spectrometer & Wide-angle camera | L'Ralph | Lucy | |
Radio Science Experiment | UltraStable Oscillator | none (part of spacecraft communications system) |
The atmospheric probe is proposed to carry 4 scientific instruments as part of the baseline concept.[1]
Instrument | Heritage Instrument | Heritage Mission | |
---|---|---|---|
Double focus mass spectrometer | Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) | Rosetta | |
Atmospheric Structure Instrument | Huygens Atmospheric Structure Instrument (HASI) | Huygens | |
Ortho-Para H2 Detector | (in development) | none | |
Radio Science Experiment | UltraStable Oscillator | none (part of probe communications system) |