Universally Baire set explained
In the mathematical field of descriptive set theory, a set of real numbers (or more generally a subset of the Baire space or Cantor space) is called universally Baire if it has a certain strong regularity property. Universally Baire sets play an important role in Ω-logic, a very strong logical system invented by W. Hugh Woodin and the centerpiece of his argument against the continuum hypothesis of Georg Cantor.
Definition
A subset A of the Baire space is universally Baire if it has the following equivalent properties:
- For every notion of forcing, there are trees T and U such that A is the projection of the set of all branches through T, and it is forced that the projections of the branches through T and the branches through U are complements of each other.
- For every compact Hausdorff space Ω, and every continuous function f from Ω to the Baire space, the preimage of A under f has the property of Baire in Ω.
- For every cardinal λ and every continuous function f from λω to the Baire space, the preimage of A under f has the property of Baire.
References
- Book: Joan. Bagaria. Stevo. Todorcevic. Stevo Todorčević. Set Theory: Centre de Recerca Matemàtica Barcelona, 2003-2004 . Trends in Mathematics . 978-3-7643-7691-8 .
- Book: Feng . Qi . Menachem. Magidor. Menachem Magidor. Hugh. Woodin. Hugh Woodin . H.. Judah. W.. Just. Hugh. Woodin . Set Theory of the Continuum . Mathematical Sciences Research Institute Publications .