Uniformly disconnected space explained

(X,d)

for which there exists

λ>0

such that no pair of distinct points

x,y\inX

can be connected by a

λ

-chain.A

λ

-chain between

x

and

y

is a sequence of points

x=x0,x1,\ldots,xn=y

in

X

such that

d(xi,xi+1)\leqλd(x,y),\foralli\in\{0,\ldots,n\}

.[1]

Properties

Uniform disconnectedness is invariant under quasi-Möbius maps.[2]

References

  1. Book: Heinonen, Juha . Lectures on Analysis on Metric Spaces . Universitext . Springer-Verlag . New York . 2001 . x+140 . 0-387-95104-0.
  2. Heer. Loreno. 2017-08-28. Some Invariant Properties of Quasi-Möbius Maps. Analysis and Geometry in Metric Spaces. en. 5. 1. 69–77. 10.1515/agms-2017-0004. 2299-3274. 1603.07521.