In functional analysis, a uniform algebra A on a compact Hausdorff topological space X is a closed (with respect to the uniform norm) subalgebra of the C*-algebra C(X) (the continuous complex-valued functions on X) with the following properties:
the constant functions are contained in A
for every x, y
\in
\in
\ne
As a closed subalgebra of the commutative Banach algebra C(X) a uniform algebra is itself a unital commutative Banach algebra (when equipped with the uniform norm). Hence, it is, (by definition) a Banach function algebra.
A uniform algebra A on X is said to be natural if the maximal ideals of A are precisely the ideals
Mx
If A is a unital commutative Banach algebra such that
||a2||=||a||2