Tzitzeica equation explained
The Tzitzeica equation is a nonlinear partial differential equation devised by Gheorghe Țițeica in 1907 in the study of differential geometry, describing surfaces of constant affine curvature.[1] The Tzitzeica equation has also been used in nonlinear physics, being an integrable 1+1 dimensional Lorentz invariant system.[2]
On substituting
the equation becomes
w(x,y)y,w(x,y)-w(x,y)xw(x,y)y-w(x,y)3+1=0
.
One obtains the traveling solution of the original equation by the reverse transformation
.
References
- G.. Tzitzéica. Sur une nouvelle classes de surfaces. Comptes rendus de l'Académie des Sciences. 144. 1257–1259. 1907. 38.0642.01.
- Book: Polyanin, Andrei D.. Handbook of Nonlinear Partial Differential Equations. Zaitsev. Valentin F.. 2016-04-19. Chapman & Hall/CRC. 978-0-429-15037-1. 2nd. en. 10.1201/b11412. 540–542.
Further reading
- Book: Griffiths, Graham W.. Schiesser. William E.. Introduction to Traveling Wave Analysis. 2012. Traveling Wave Analysis of Partial Differential Equations. Elsevier/Academic Press. Amsterdam. 10.1016/b978-0-12-384652-5.00001-7. 978-0-12-384652-5.
- Book: Enns. Richard H.. Nonlinear physics with Maple for scientists and engineers. 1997. Birkhäuser. McGuire. George C.. 0-8176-3838-5. Boston. 36130678.
- Book: Shingareva. Inna. Solving nonlinear partial differential equations with Maple and Mathematica. 2011. Springer. Lizárraga-Celaya. Carlos. 978-3-7091-0517-7. Vienna. 755068833.
- Eryk Infeld and George Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge 2000
- Saber Elaydi, An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice, Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998