Tzitzeica equation explained

The Tzitzeica equation is a nonlinear partial differential equation devised by Gheorghe Țițeica in 1907 in the study of differential geometry, describing surfaces of constant affine curvature.[1] The Tzitzeica equation has also been used in nonlinear physics, being an integrable 1+1 dimensional Lorentz invariant system.[2]

uxy=\exp(u)-\exp(-2u).

On substituting

w(x,y)=\exp(u(x,y))

the equation becomes

w(x,y)y,w(x,y)-w(x,y)xw(x,y)y-w(x,y)3+1=0

.

One obtains the traveling solution of the original equation by the reverse transformation

u(x,y)=ln(w(x,y))

.

References

  1. G.. Tzitzéica. Sur une nouvelle classes de surfaces. Comptes rendus de l'Académie des Sciences. 144. 1257–1259. 1907. 38.0642.01.
  2. Book: Polyanin, Andrei D.. Handbook of Nonlinear Partial Differential Equations. Zaitsev. Valentin F.. 2016-04-19. Chapman & Hall/CRC. 978-0-429-15037-1. 2nd. en. 10.1201/b11412. 540–542.

Further reading