Type-1 OWA operators are a set of aggregation operators that generalise the Yager's OWA (ordered weighted averaging) operators) in the interest of aggregating fuzzy sets rather than crisp values in soft decision making and data mining.
These operators provide a mathematical technique for directly aggregating uncertain information with uncertain weights via OWA mechanism in soft decision making and data mining, where these uncertain objects are modelled by fuzzy sets.
The two definitions for type-1 OWA operators are based on Zadeh's Extension Principle and
\alpha
Let
F(X)
X
Given n linguistic weights
\left\{{Wi}
n | |
\right\} | |
i=1 |
U=[0,1]
\Phi
\Phi\colonF(X) x … x F(X)\longrightarrowF(X)
(A1, … ,An)\mapstoY
such that
\muY(y)=\displaystyle
\sup | |||||||||
|
ia\sigma=y}\left({\begin{array}{*{1}l}\mu
W1 |
(w1)\wedge … \wedge
\mu | |
Wn |
(wn)\wedge\mu
A1 |
(a1)\wedge … \wedge\mu
An |
(an)\end{array}}\right)
where
\bar{w}i=
wi | |||||||||
|
}
\sigma\colon\{1, … ,n\}\longrightarrow\{1, … ,n\}
a\sigma\geqa\sigma, \foralli=1, … ,n-1
a\sigma(i)
i
\left\{{a1, … ,an}\right\}
Using the alpha-cuts of fuzzy sets:
Given the n linguistic weights
\left\{{Wi}
n | |
\right\} | |
i=1 |
U=[0, 1]
\alpha\in[0, 1]
\alpha
\alpha
\left\{
i | |
{W | |
\alpha |
}
n | |
\right\} | |
i=1 |
\alpha
\left\{{Ai}
n | |
\right\} | |
i=1 |
\Phi\alpha\left(
1 | |
{A | |
\alpha |
,\ldots
n | |
,A | |
\alpha |
}\right)=\left\{{
| ||||||||||
}{\sum\limits |
n | |
i=1 |
{wi}}\left|{wi\in
i | |
W | |
\alpha |
, ai}\right.\in
i | |
A | |
\alpha |
, i=1,\ldots,n}\right\}
where
i= | |
W | |
\alpha |
\{w|
\mu | |
Wi |
(w)\geq\alpha\},
i=\{ | |
A | |
\alpha |
x|\mu
Ai |
(x)\geq\alpha\}
\sigma:\{ 1, … ,n \}\to\{ 1, … ,n \}
a\sigma\gea\sigma, \forall i=1, … ,n-1
a\sigma
i
\left\{{a1, … ,an}\right\}
Given the n linguistic weights
\left\{{Wi}
n | |
\right\} | |
i=1 |
U=[0, 1]
A1, … ,An
Y=G
where
Y
G
According to the Representation Theorem of Type-1 OWA Operators, a general type-1 OWA operator can be decomposed into a series of
\alpha
\alpha
\Phi\alpha\left(
1 | |
{A | |
\alpha |
, …
n | |
,A | |
\alpha |
}\right)
\muG(x)=\operatorname{vee}
\limits | |||||||||||||||
|
\right)\alpha}\alpha
For the left end-points, we need to solve the following programming problem:
\Phi\alpha\left(
1 | |
{A | |
\alpha |
, …
n | |
,A | |
\alpha |
}\right)-=\operatorname{min}\limits\begin{array{l}
i | |
W | |
\alpha- |
\lewi\le
i | |
W | |
\alpha+ |
i | |
A | |
\alpha- |
\leai\le
i | |
A | |
\alpha+ |
\end{array}}
n | |
\sum\limits | |
i=1 |
{wia\sigma/
n | |
\sum\limits | |
i=1 |
{wi}}
while for the right end-points, we need to solve the following programming problem:
\Phi\alpha\left(
1 | |
{A | |
\alpha |
, … ,
n | |
A | |
\alpha |
}\right)+=\operatorname{max}\limits\begin{array{l}
i | |
W | |
\alpha- |
\lewi\le
i | |
W | |
\alpha+ |
i | |
A | |
\alpha- |
\leai\le
i | |
A | |
\alpha+ |
\end{array}}
n | |
\sum\limits | |
i=1 |
{wia\sigma/
n | |
\sum\limits | |
i= 1 |
{wi}}
A fast method has been presented to solve two programming problem so that the type-1 OWA aggregation operation can be performed efficiently, for details, please see the paper.
Three-step process:
\alpha
\alpha\in[0,1]
\rho\alpha
| |||||||
i0=1
\rho\alpha
i0 | |
\ge
\sigma(i0) | |
A | |
\alpha+ |
\rho\alpha
i0 | |
i0\leftarrowi0+1
\rho\alpha
| |||||||
i0=1
\rho\alpha
i0 | |
\ge
\sigma(i0) | |
A | |
\alpha- |
\rho\alpha
i0 | |
i0\leftarrowi0+1
G
\left[{\rho\alpha
| |||||||
, \rho\alpha
| |||||||
}\right]
\muG(x)=\operatornamevee
\limits | |||||||||||||||||||||||
|
\right]}\alpha
Type-2 OWA operators have been suggested to aggregate the type-2 fuzzy sets for soft decision making.
Type-1 OWA operators have been applied to different domains for soft decision making.