The two-dimensional critical Ising model is the critical limit of the Ising model in two dimensions. It is a two-dimensional conformal field theory whose symmetry algebra is the Virasoro algebra with the central charge
c=\tfrac12
(4,3)
The Kac table of the
(4,3)
\begin{array}{c|ccc}2&
1 | |
2 |
&
1 | |
16 |
&0\ 1&0&
1 | |
16 |
&
1 | |
2 |
\ \hline&1&2&3\end{array}
\begin{array}{cccc} \hline Kactableindices&Dimension&Primaryfield&Name \\ \hline (1,1)or(3,2)&0&1&Identity\\ (2,1)or(2,2)&
1 | |
16 |
&\sigma&Spin\\ (1,2)or(3,1)&
12 | |
& |
\epsilon&Energy \\ \hline \end{array}
l{S}=l{R}0 ⊗ \bar{l{R}}0 ⊕
l{R} | ||||
|
⊗
\bar{l{R}} | ||||
|
⊕
l{R} | ||||
|
\bar{l{R}} | ||||
|
l{R}\Delta
\Delta
The characters of the three representations of the Virasoro algebra that appear in the space of states are
\begin{align} \chi0(q)&=
1 | |
η(q) |
\sumk\inZ\left(
| ||||
q |
| ||||
-q |
\right)=
1 | |
2\sqrt{η(q) |
η(q)
\thetai(0|q)
q=e2\pi
\theta3(0|q)=\sumn\inZ
| ||||
q |
l{S}
\chii(-\tfrac{1}{\tau})=\sumjl{S}ij\chij(\tau)
l{S}=
12 | |
\left(\begin{array}{ccc} |
1&1&\sqrt{2}\ 1&1&-\sqrt{2}\ \sqrt{2}&-\sqrt{2}&0\end{array}\right)
1,\epsilon,\sigma
Z(q)=
2 | |
\left|\chi | |
0(q)\right| |
+
\left|\chi | ||||
|
(q)\right|2+
\left|\chi | ||||
|
=
|\theta2(0|q)|+|\theta3(0|q)|+|\theta4(0|q)| | |
2|η(q)| |
The fusion rules of the model are
\begin{align} 1 x 1&=1 \\ 1 x \sigma&=\sigma \\ 1 x \epsilon&=\epsilon \\ \sigma x \sigma&=1+\epsilon \\ \sigma x \epsilon&=\sigma \\ \epsilon x \epsilon&=1 \end{align}
Z2
\sigma\to-\sigma
C111=C1\epsilon\epsilon=C1\sigma\sigma=1 , C\sigma\sigma\epsilon=
12 | |
\begin{align} \sigma(z)\sigma(0)&=
2\Delta1-4\Delta\sigma | |
|z| |
C1\sigma\sigma(1(0)+O(z))+
2\Delta\epsilon-4\Delta\sigma | |
|z| |
C\sigma\sigma\epsilon(\epsilon(0)+O(z)) \\ &=
| ||||
|z| |
(1(0)+O(z))+
12 | |
|z| |
| ||||
+O(z)) \end{align}
\Delta1,\Delta\sigma,\Delta\epsilon
O(z)
Any one-, two- and three-point function of primary fields is determined by conformal symmetry up to a multiplicative constant. This constant is set to be one for one- and two-point functions by a choice of field normalizations. The only non-trivial dynamical quantities are the three-point structure constants, which were given above in the context of operator product expansions.
\left\langle1(z1)\right\rangle=1 , \left\langle\sigma(z1)\right\rangle=0 , \left\langle\epsilon(z1)\right\rangle=0
\left\langle1(z1)1(z2)\right\rangle=1 , \left\langle\sigma(z1)\sigma(z2)\right\rangle=|z12
| ||||
| |
, \left\langle\epsilon(z1)\epsilon(z2)\right\rangle=|z12|-2
zij=zi-zj
\langle1\sigma\rangle=\langle1\epsilon\rangle=\langle\sigma\epsilon\rangle=0
\left\langle1(z1)1(z2)1(z3)\right\rangle=1 , \left\langle\sigma(z1)\sigma(z2)1(z3)\right\rangle=|z12
| ||||
| |
, \left\langle\epsilon(z1)\epsilon(z2)1(z3)\right\rangle=|z12|-2
\left\langle\sigma(z1)\sigma(z2)\epsilon(z3)\right\rangle=
12 | |
|z |
12
| ||||
| |
|z13|-1|z23|-1
\langle11\sigma\rangle= \langle11\epsilon\rangle =\langle1\sigma\epsilon\rangle = \langle\sigma\epsilon\epsilon\rangle = \langle\sigma\sigma\sigma\rangle = \langle\epsilon\epsilon\epsilon\rangle =0
The three non-trivial four-point functions are of the type
\langle\sigma4\rangle,\langle\sigma2\epsilon2\rangle,\langle\epsilon4\rangle
4 | |
\left\langle\prod | |
i=1 |
Vi(zi)\right\rangle
(s) | |
l{F} | |
j |
(t) | |
l{F} | |
j |
Vj(z2)
V1(z1)V2(z2)
Vj(z4)
V1(z1)V4(z4)
x= | z12z34 |
z13z24 |
In the case of
\langle\epsilon4\rangle
\begin{align} &\langle\epsilon4\rangle=
2 | |
\left|l{F} | |
bf{1}\right| |
=
2 \\ & | |
\left|l{F} | |
bf{1}\right| |
(s) | |
l{F} | |
bf{1} = |
(t) | |
l{F} | |
bf{1} = |
\left[\prod1\leq
| ||||
z | ||||
ij |
\right]
1-x+x2 | ||||||||||||||
|
\underset{(zi)=(x,0,infty,1)}{=}
1 | |
x(1-x) |
-1 \end{align}
In the case of
\langle\sigma2\epsilon2\rangle
\begin{align} &\langle\sigma2\epsilon2\rangle=
2 | |
\left|l{F} | |
bf{1}\right| |
=
2\left|l{F} | |
C | |
\sigma\sigma\epsilon |
2 | |
\sigma\right| |
=
14\left|l{F} | |
(t) |
2 | |
\sigma\right| |
\\ &
(s) | |
l{F} | |
bf{1} = |
12 | |
l{F} |
(t) | |
\sigma =\left[z |
| ||||
34 |
\left(z13z24z14z23
| |||||
\right) | \right] |
| ||||||||||||||
|
\underset{(zi)=(x,0,infty,1)}{=}
| ||||||||||||||
|
\end{align}
In the case of
\langle\sigma4\rangle
(z1,z2,z3,z4)=(x,0,infty,1)
| ||||
x |
| ||||
(1-x) |
\prod1\leq
| ||||
z | ||||
ij |
x
\begin{align} \langle\sigma4\rangle&=
(s) | |
\left|l{F} | |
bf{1} |
\right|2+
14 | |
\left|l{F} |
(s) | |
\epsilon |
\right|2=
(t) | |
\left|l{F} | |
bf{1} |
\right|2+
14 | |
\left|l{F} |
(t) | |
\epsilon |
\right|2\\ &=
|1+\sqrt{x | |
|+|1-\sqrt{x}|}{2|x| |
| ||||
| |||||
1)}{=} |
1 | ||||||||||||||||
|
\end{align}
In the case of
\langle\sigma4\rangle
\begin{align} &
(s) | |
l{F} | |
bf{1} |
=
| ||||
2 |
From the representation of the model in terms of Dirac fermions, it is possible to compute correlation functions of any number of spin or energy operators:
\left\langle
2n | |
\prod | |
i=1 |
2 | |
\epsilon(z | |
i)\right\rangle |
=\left|\det\left(
1 | |
zij |
\right)1\leq\right|2
\left\langle
2n | |
\prod | |
i=1 |
2 | |
\sigma(z | |
i)\right\rangle |
=
1 | |
2n |
\sum\begin{array{c}\epsiloni=\pm1
2n | |
\ \sum | |
i=1 |
\epsiloni=0\end{array}}\prod1\leq|zij
| ||||
| |
These formulas have generalizations to correlation functions on the torus, which involve theta functions.
The two-dimensional Ising model is mapped to itself by a high-low temperature duality. The image of the spin operator
\sigma
\mu
(\Delta\mu,\bar\Delta\mu)=(\Delta\sigma,\bar\Delta\sigma)=(\tfrac{1}{16},\tfrac{1}{16})
\left\langle\sigma(z1)\mu(z2)\sigma(z3)\mu(z
2 | |
4)\right\rangle |
=
12 | |||
|
\left\langle
2 | |
\prod | |
i)\right\rangle |
= \left\langle
2 | |
\prod | |
i)\right\rangle |
=
12 | |||
|
The Ising model has a description as a random cluster model due to Fortuin and Kasteleyn. In this description, the natural observables are connectivities of clusters, i.e. probabilities that a number of points belong to the same cluster. The Ising model can then be viewed as the case
q=2
q
q
In the critical limit, connectivities of clusters have the same behaviour under conformal transformations as correlation functions of the spin operator. Nevertheless, connectivities do not coincide with spin correlation functions: for example, the three-point connectivity does not vanish, while
\langle\sigma\sigma\sigma\rangle=0
\langle\sigma\sigma\sigma\sigma\rangle
q\to2
q