Turing is a stream cipher developed by Gregory G. Rose and Philip Hawkes at Qualcomm for CDMA.[1]
Turing generates 160 bits of output in each round by applying a non-linear filter to the internal state of an LFSR. It is named after Alan Turing. It was developed based on the SOBER cipher introduced by Rose in 1998.[2] This is evident in its major component, the Linear Feedback Shift Register (LFSR), which is the same technology found in the family of SOBER machines.[3] Turing, however, is distinguished from its predecessors by the way it produces five words (five times more) of output for every internal update. It also provides up to 256-bit key strength and is designed to be fast in software, achieving around 5.5 cycles/byte on some x86 processors.
There are experts who found that the Turing stream cipher has a number of weaknesses when faced with chosen IV attacks.[4] For instance, its key scheduling algorithm has the same secret key for different initialization vectors and this is found to lower the system's security.