Triangular array explained

In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ith row contains only i elements.

Examples

Notable particular examples include these:

Triangular arrays of integers in which each row is symmetric and begins and ends with 1 are sometimes called generalized Pascal triangles; examples include Pascal's triangle, the Narayana numbers, and the triangle of Eulerian numbers.[9]

Generalizations

Triangular arrays may list mathematical values other than numbers; for instance the Bell polynomials form a triangular array in which each array entry is a polynomial.[10]

Arrays in which the length of each row grows as a linear function of the row number (rather than being equal to the row number) have also been considered.[11]

Applications

Romberg's method can be used to estimate the value of a definite integral by completing the values in a triangle of numbers.[12]

The Boustrophedon transform uses a triangular array to transform one integer sequence into another.[13]

See also

Notes and References

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .