Transverse aeolian ridges explained
Transverse aeolian ridges (TARs) are visually bright features commonly found in topographic depressions on Mars.[1] [2] [3] These small-scale and relict bedforms were first seen in narrow-angle images from the Mars Orbiter Camera (MOC) and were called “ridges” to preserve both dunes and ripples as formative mechanisms. While TARs are widespread on Mars, their formation, age, composition, and role in past Martian sediment cycles remain poorly constrained.[4] [5] [6]
Aeolian bedforms
Aeolian bedforms are typically classified into either ripples or dunes based on their morphologies and formative mechanisms. Dunes are larger (>0.5 m or taller on Earth[7]), typically asymmetrical in cross-profile, and are the product of hydrodynamic instability related to sand flux, the local topography, shear stress exerted by the wind on sand grains,[8] and flow-form interactions induced by the topography of the dune itself.[9] [10] [11] Wind ripples by comparison are small (amplitudes of 0.6 - 15 mm[12] [13] [14] [15]), are more symmetrical in profile, and are created by saltating and reptating sand grains that tend for form a regular pattern of impact and shadow zones.
On Mars, TARs represent some intermediate form with characteristics of both ripples and dunes. TARs are typically symmetrical in profile[16] [17] similar to wind ripples. However, TARs are several orders of magnitude larger than wind ripples observed on Mars or Earth.[18] [19] [20] TARs are much smaller than Martian dunes, do not have slip-faces, and do not have the characteristic dune stoss and leeslopes. Furthermore, while TARs and dunes have approximately basaltic signatures on Mars,[21] TARs have lower thermal inertias than dunes,[22] indicating that TARs on their surfaces are composed of smaller particles than dunes.[23] Some features on Earth have been proposed as proxies for TARs: gravel megaripples in Argentina,[24] [25] megaripples in Iran[26] and Libya,[27] and reversing dunes in Idaho,[28] but an exact analog remains elusive.
Morphologies
TARs also exhibit a range of morphologies, which are interpreted as representing different formative and evolutionary processes. Past efforts have been made to categorize TAR with classification systems primarily focusing on crest morphology.
The morphologies of Transverse Aeolian ridges!Morphology!Description!Example image!HiRISE image sourceSimple | Straight parallel crests | | https://www.uahirise.org/ESP_045814_1520 |
Forked | Straight parallel crests with forking | | https://www.uahirise.org/ESP_045814_1520 |
Sinuous | Winding but non-overlapping crests | | https://www.uahirise.org/PSP_002824_1355 |
Barchan-like | Relatively short crests bent at ~90-150º | | https://www.uahirise.org/ESP_036410_1810 |
Networked | Highly connected ridge crests that form closed irregular polygonal shapes | | https://www.uahirise.org/PSP_002824_1355 |
Feathered[29] [30] * | Large primary ridge with smaller secondary ridges approximately perpendicular to the main crest | | | |
*Established in the literature but not recognized as a distinct morphology
Formation
There are competing hypotheses for TAR formation.[31] [32] Granule ripples covered by a monolayer of coarse millimeter-sized particles have been proposed for smaller TARs (amplitude <1 m),[33] [34] while dust-covered reversing dunes have been proposed for TARs >1 m in amplitude.[35]
Past climate
Understanding TAR formation and evolution could offer insight into the winds that created them. In turn, these inferences could have further insights into past wind patterns, atmospheric compositions, and climatic dynamics generally on Mars.[36] Relict aeolian features exist on Earth and are useful records of local and atmospheric conditions, but the rapid erosion rates on Earth erase aeolian features older than the approximately the Last Glacial Maximum.[37] [38] [39] [40] Resurfacing rates are much slower on Mars so TARs could preserve conditions considerably further back in the Martian past.
Current activity
A 2020 study found evidence that some isolated TARs could still be minimally active (i.e. ridge crests that are moving or changing), but the literature suggests that the majority of TARs are immobile.[41] For example, dunes have been observed passing over TARs with no change to the underlying TARs after the dune's passing.
See also
References
- Berman. Daniel C.. Balme. Matthew R.. Rafkin. Scot C.R.. Zimbelman. James R.. 2011. Transverse Aeolian Ridges (TARs) on Mars II: Distributions, orientations, and ages. Icarus. 213. 1. 116–130. 10.1016/j.icarus.2011.02.014. 2011Icar..213..116B. 0019-1035.
- Balme. Matt. Berman. Daniel C.. Bourke. Mary C.. Zimbelman. James R.. 2008. Transverse Aeolian Ridges (TARs) on Mars. Geomorphology. 101. 4. 703–720. 10.1016/j.geomorph.2008.03.011. 2008Geomo.101..703B. 0169-555X.
- Wilson. Sharon A.. 2004. Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars. Journal of Geophysical Research. en. 109. E10. E10003. 10.1029/2004JE002247. 2004JGRE..10910003W. 0148-0227.
- Bridges. N. T.. Bourke. M. C.. Geissler. P. E.. Banks. M. E.. Colon. C.. Diniega. S.. Golombek. M. P.. Hansen. C. J.. Mattson. S.. McEwen. A. S.. Mellon. M. T.. 2012. Planet-wide sand motion on Mars. Geology. en. 40. 1. 31–34. 10.1130/G32373.1. 2012Geo....40...31B. 0091-7613.
- Geissler. Paul E.. Wilgus. Justin T.. 2017. The morphology of transverse aeolian ridges on Mars. Aeolian Research. en. 26. 63–71. 10.1016/j.aeolia.2016.08.008. 2017AeoRe..26...63G.
- Geissler. Paul E.. 2014. The birth and death of transverse aeolian ridges on Mars: Transverse Aeolian Ridges on Mars. Journal of Geophysical Research: Planets. en. 119. 12. 2583–2599. 10.1002/2014JE004633. free.
- Vriend. N. M.. Jarvis. P. A.. 2018. Between a ripple and a dune. Nature Physics. en. 14. 7. 641–642. 10.1038/s41567-018-0113-0. 2018NatPh..14..641V. 125921951. 1745-2473.
- WILSON. IAN G.. Aeolian Bedforms-Their Development and Origins. 1972. Sedimentology. 19. 3–4. 173–210. 10.1111/j.1365-3091.1972.tb00020.x. 1972Sedim..19..173W. 0037-0746.
- G. Kocurek, M. Townsley, E. Yeh, K.. 1992. Dune and Dune-Field Development on Padre Island, Texas, with Implications for Interdune Deposition and Water-Table-Controlled Accumulation. SEPM Journal of Sedimentary Research. 62. 10.1306/d4267974-2b26-11d7-8648000102c1865d. 1527-1404.
- Book: Bagnold, R. A.. Ralph Bagnold. Physics of Blown Sand and Desert Dunes.. 2012. Dover Publications. 978-1-306-35507-0. 868966351.
- Werner. B. T.. 1995. Eolian dunes: Computer simulations and attractor interpretation. Geology. en. 23. 12. 1107–1110. 10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2. 1995Geo....23.1107W. 0091-7613.
- Anderson. R. 1990. Eolian ripples as examples of self-organization in geomorphological systems. Earth-Science Reviews. en. 29. 1–4. 77–96. 10.1016/0012-8252(0)90029-U.
- Book: Boulton, J. Wayne. Quantifying the morphology of aeolian impact ripples formed in a natural dune setting. 1997. National Library of Canada = Bibliothèque nationale du Canada. 654186636.
- Sharp. Robert P.. 1963. Wind Ripples. The Journal of Geology. en. 71. 5. 617–636. 10.1086/626936. 1963JG.....71..617S. 225043269. 0022-1376.
- Wang. Peng. Zhang. Jie. Huang. Ning. 2019. A theoretical model for aeolian polydisperse-sand ripples. Geomorphology. en. 335. 28–36. 10.1016/j.geomorph.2019.03.013. 2019Geomo.335...28W. free.
- Zimbelman. J. R.. Williams. S. H.. 2007-07-01. An Evaluation of Formation Processes for Transverse Aeolian Ridges on Mars. Seventh International Conference on Mars. 1353. 3047. 2007LPICo1353.3047Z.
- Shockey. K. M.. Zimbelman. J. R.. 2012-09-20. Analysis of transverse aeolian ridge profiles derived from HiRISE images of Mars. Earth Surface Processes and Landforms. 38. 2. 179–182. 10.1002/esp.3316. 128455414 . 0197-9337.
- Bourke. M.C.. Balme. M.. Beyer. R.A.. Williams. K.K.. Zimbelman. J.. 2006. A comparison of methods used to estimate the height of sand dunes on Mars. Geomorphology. 81. 3–4. 440–452. 10.1016/j.geomorph.2006.04.023. 2006Geomo..81..440B. 0169-555X.
- Claudin. Philippe. Andreotti. Bruno. 2006. A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth and Planetary Science Letters. 252. 1–2. 30–44. 10.1016/j.epsl.2006.09.004. 0012-821X. cond-mat/0603656. 2006E&PSL.252...30C. 13910286.
- Williams. S. H.. Zimbelman. J. R.. Ward. A. W.. 2002. Large Ripples on Earth and Mars. Lunar and Planetary Science Conference. 33. 1508. 2002LPI....33.1508W.
- Fenton. Lori K.. Bandfield. Joshua L.. Ward. A. Wesley. 2003. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets. Journal of Geophysical Research: Planets. 108. E12. 5129. 10.1029/2002je002015. 2003JGRE..108.5129F. 0148-0227. free.
- Fenton. Lori K.. Mellon. Michael T.. 2006. Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations within the Proctor Crater dune field on Mars. Journal of Geophysical Research. 111. E6. E06014. 10.1029/2004je002363. 2006JGRE..111.6014F. 0148-0227. free.
- Presley. Marsha A.. Christensen. Philip R.. 1997-03-25. Thermal conductivity measurements of particulate materials 1. A review. Journal of Geophysical Research: Planets. en. 102. E3. 6535–6549. 10.1029/96JE03302. 1997JGR...102.6535P. free.
- de Silva. S. L.. Spagnuolo. M. G.. Bridges. N. T.. Zimbelman. J. R.. 2013-10-31. Gravel-mantled megaripples of the Argentinean Puna: A model for their origin and growth with implications for Mars. Geological Society of America Bulletin. 125. 11–12. 1912–1929. 10.1130/b30916.1. 2013GSAB..125.1912D. 0016-7606.
- Montgomery. David R.. Bandfield. Joshua L.. Becker. Scott K.. 2012. Periodic bedrock ridges on Mars. Journal of Geophysical Research: Planets. 117. E3. n/a. 10.1029/2011je003970. 2012JGRE..117.3005M. 0148-0227. free.
- Foroutan. M.. Zimbelman. J.R.. 2016. Mega-ripples in Iran: A new analog for transverse aeolian ridges on Mars. Icarus. 274. 99–105. 10.1016/j.icarus.2016.03.025. 2016Icar..274...99F. 0019-1035.
- Foroutan. M.. Steinmetz. G.. Zimbelman. J.R.. Duguay. C.R.. 2019. Megaripples at Wau-an-Namus, Libya: A new analog for similar features on Mars. Icarus. 319. 840–851. 10.1016/j.icarus.2018.10.021. 2019Icar..319..840F. 125750298. 0019-1035.
- Zimbelman. James R.. Scheidt. Stephen P.. 2014. Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars. Icarus. 230. 29–37. 10.1016/j.icarus.2013.08.004. 2014Icar..230...29Z. 0019-1035.
- Berman. Daniel C.. Balme. Matthew R.. Michalski. Joseph R.. Clark. Stacey C.. Joseph. Emily C.S.. 2018. High-resolution investigations of Transverse Aeolian Ridges on Mars. Icarus. en. 312. 247–266. 10.1016/j.icarus.2018.05.003. 2018Icar..312..247B. 125348147.
- Bhardwaj. Anshuman. Sam. Lydia. Martin-Torres. F. Javier. Zorzano. Maria-Paz. 2019. Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site. Remote Sensing. en. 11. 8. 912. 10.3390/rs11080912. 2019RemS...11..912B. 2072-4292. free. 2164/14183. free.
- Hugenholtz. Chris H.. Barchyn. Thomas E.. Boulding. Adam. 2017. Morphology of transverse aeolian ridges (TARs) on Mars from a large sample: Further evidence of a megaripple origin?. Icarus. 286. 193–201. 10.1016/j.icarus.2016.10.015. 2017Icar..286..193H. 0019-1035.
- Montgomery. David R.. Bandfield. Joshua L.. Becker. Scott K.. 2012. Periodic bedrock ridges on Mars. Journal of Geophysical Research: Planets. 117. E3. n/a. 10.1029/2011je003970. 2012JGRE..117.3005M. 0148-0227. free.
- Lämmel. Marc. Meiwald. Anne. Yizhaq. Hezi. Tsoar. Haim. Katra. Itzhak. Kroy. Klaus. 2018-04-30. Aeolian sand sorting and megaripple formation. Nature Physics. 14. 7. 759–765. 10.1038/s41567-018-0106-z. 2018NatPh..14..759L. 125706603. 1745-2473.
- Wilson. S. A.. Zimbelman. J. R.. Williams. S. H.. 2003-03-01. Large Aeolian Ripples: Extrapolations from Earth to Mars. Lunar and Planetary Science Conference. 34. 1862. 2003LPI....34.1862W.
- Zimbelman. James R.. 2010. Transverse Aeolian Ridges on Mars: First results from HiRISE images. Geomorphology. 121. 1–2. 22–29. 10.1016/j.geomorph.2009.05.012. 2010Geomo.121...22Z. 0169-555X.
- Gardin. Emilie. Allemand. Pascal. Quantin. Cathy. Silvestro. Simone. Delacourt. Christophe. 2012. Dune fields on Mars: Recorders of a climate change?. Planetary and Space Science. Titan Through Time: A Workshop on Titan’s Formation, Evolution and Fate. en. 60. 1. 314–321. 10.1016/j.pss.2011.10.004. 2012P&SS...60..314G. 0032-0633.
- BEVERIDGE. CARRIE. KOCUREK. GARY. EWING. RYAN C.. LANCASTER. NICHOLAS. MORTHEKAI. P.. SINGHVI. ASHOK K.. MAHAN. SHANNON A.. 2006. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico. Sedimentology. 53. 6. 1391–1409. 10.1111/j.1365-3091.2006.00814.x. 2006Sedim..53.1391B. 129496135 . 0037-0746.
- KOCUREK. GARY. HAVHOLM. KAREN G.. DEYNOUX. MAX. BLAKEY. RONALD C.. 1991. Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania. Sedimentology. 38. 4. 751–772. 10.1111/j.1365-3091.1991.tb01018.x. 1991Sedim..38..751K. 0037-0746.
- Swezey. Christopher S.. 2003. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania: Comment and Reply. Geology. 31. 1. e18. 10.1130/0091-7613-31.1.e18. 1943-2682. free.
- Wolfe. Stephen A.. Huntley. David J.. Ollerhead. Jeff. 2006-07-18. Relict Late Wisconsinan Dune Fields of the Northern Great Plains, Canada*. Géographie Physique et Quaternaire. 58. 2–3. 323–336. 10.7202/013146ar. 1492-143X. free.
- Silvestro. S.. Chojnacki. M.. Vaz. D. A.. Cardinale. M.. Yizhaq. H.. Esposito. F.. 2020. Megaripple Migration on Mars. Journal of Geophysical Research: Planets. en. 125. 8. e2020JE006446. 10.1029/2020JE006446. 33133993. 7583471. 2020JGRE..12506446S. 2169-9097. free.