In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted .[1] The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830.[2] The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter
The real Gudermannian function is typically defined for to be the integral of the hyperbolic secant[3]
\phi=\operatorname{gd}\psi \equiv
\psi | |
\int | |
0 |
\operatorname{sech}tdt =\operatorname{arctan}(\sinh\psi).
The real inverse Gudermannian function can be defined for as the integral of the (circular) secant
\psi=\operatorname{gd}-1\phi =
\phi | |
\int | |
0 |
\operatorname{sec}tdt =\operatorname{arsinh}(\tan\phi).
The hyperbolic angle measure
\psi=\operatorname{gd}-1\phi
\phi
\phi
\psi=\operatorname{lam}\phi.
k\operatorname{gd}-1\phi
\phi
The two angle measures and are related by a common stereographic projection
s=\tan\tfrac12\phi=\tanh\tfrac12\psi,
and this identity can serve as an alternative definition for and valid throughout the complex plane:
\begin{aligned} \operatorname{gd}\psi&={2\arctan}l(\tanh\tfrac12\psir),\\[5mu] \operatorname{gd}-1\phi&={2\operatorname{artanh}}l(\tan\tfrac12\phir). \end{aligned}
__TOC__
We can evaluate the integral of the hyperbolic secant using the stereographic projection (hyperbolic half-tangent) as a change of variables:
\begin{align} \operatorname{gd}\psi &\equiv
\psi | |
\int | |
0 |
1 | |
\operatorname{cosh |
t}dt =
| ||||
\int | ||||
0 |
1-u2 | |
1+u2 |
2du | |
1-u2 |
l(u=\tanh\tfrac12tr)\\[8mu] &=
| ||||
2\int | ||||
0 |
1 | |
1+u2 |
du ={2\arctan}l(\tanh\tfrac12\psir),\\[5mu] \tan\tfrac12{\operatorname{gd}\psi}&=\tanh\tfrac12\psi. \end{align}
Letting and we can derive a number of identities between hyperbolic functions of and circular functions of [4]
\begin{align} s&=\tan\tfrac12\phi=\tanh\tfrac12\psi,\\[6mu]
2s | |
1+s2 |
&=\sin\phi=\tanh\psi, &
1+s2 | |
2s |
&=\csc\phi=\coth\psi,\\[10mu]
1-s2 | |
1+s2 |
&=\cos\phi=\operatorname{sech}\psi, &
1+s2 | |
1-s2 |
&=\sec\phi=\cosh\psi,\\[10mu]
2s | |
1-s2 |
&=\tan\phi=\sinh\psi, &
1-s2 | |
2s |
&=\cot\phi=\operatorname{csch}\psi.\\[8mu] \end{align}
These are commonly used as expressions for
\operatorname{gd}
\operatorname{gd}-1
\psi
\phi
|\phi|<\tfrac12\pi.
\begin{align} \operatorname{gd}\psi&=\operatorname{arctan}(\sinh\psi),\\[6mu] \operatorname{gd}-1\phi&=\operatorname{arsinh}(\tan\phi). \end{align}
(Note, for
|\phi|>\tfrac12\pi
We can also express and in terms of
\begin{align} 2\arctans&=\phi=\operatorname{gd}\psi,\\[6mu] 2\operatorname{artanh}s&=\operatorname{gd}-1\phi=\psi.\\[6mu] \end{align}
If we expand and in terms of the exponential, then we can see that
\exp\phii,
\exp\psi
\begin{align} s&=i
1-e\phi | |
1+e\phi |
=
e\psi-1 | |
e\psi+1 |
,\\[10mu] i
s-i | |
s+i |
&=\exp\phii =
e\psi-i | |
e\psi+i |
,\\[10mu]
1+s | |
1-s |
&=i
i+e\phi | |
i-e\phi |
=\exp\psi. \end{align}
For real values of and with
|\phi|<\tfrac12\pi
\begin{align} \exp\psi &=\sec\phi+\tan\phi =\tan\tfrac12l(\tfrac12\pi+\phir)\\[6mu] &=
1+\tan\tfrac12\phi | |
1-\tan\tfrac12\phi |
=\sqrt{
1+\sin\phi | |
1-\sin\phi |
\exp \phi i&= \operatorname \psi + i \tanh \psi= \tanh\tfrac12 \bigl(\pi i + \psi \bigr) \\[6mu]&= \frac= \sqrt.\end
These give further expressions for
\operatorname{gd}
\operatorname{gd}-1
|\phi|<\tfrac12\pi.
\begin{align} \operatorname{gd}\psi&=2\arctane\psi-\tfrac12\pi,\\[6mu] \operatorname{gd}-1\phi&=log(\sec\phi+\tan\phi). \end{align}
As a function of a complex variable, conformally maps the infinite strip to the infinite strip while conformally maps the infinite strip to the infinite strip
Analytically continued by reflections to the whole complex plane, is a periodic function of period which sends any infinite strip of "height" onto the strip Likewise, extended to the whole complex plane, is a periodic function of period which sends any infinite strip of "width" onto the strip For all points in the complex plane, these functions can be correctly written as:
\begin{aligned} \operatorname{gd}z&={2\arctan}l(\tanh\tfrac12zr),\\[5mu] \operatorname{gd}-1w&={2\operatorname{artanh}}l(\tan\tfrac12wr). \end{aligned}
For the and functions to remain invertible with these extended domains, we might consider each to be a multivalued function (perhaps and , with and the principal branch) or consider their domains and codomains as Riemann surfaces.
If then the real and imaginary components and can be found by:[6]
\tanu=
\sinhx | |
\cosy |
, \tanhv=
\siny | |
\coshx |
.
(In practical implementation, make sure to use the 2-argument arctangent,
Likewise, if then components and can be found by:[7]
\tanhx=
\sinu | |
\coshv |
, \tany=
\sinhv | |
\cosu |
.
Multiplying these together reveals the additional identity
\tanhx\tany=\tanu\tanhv.
The two functions can be thought of as rotations or reflections of each-other, with a similar relationship as between sine and hyperbolic sine:[8]
\begin{aligned} \operatorname{gd}iz&=i\operatorname{gd}-1z,\\[5mu] \operatorname{gd}-1iz&=i\operatorname{gd}z. \end{aligned}
The functions are both odd and they commute with complex conjugation. That is, a reflection across the real or imaginary axis in the domain results in the same reflection in the codomain:
\begin{aligned} \operatorname{gd}(-z)&=-\operatorname{gd}z,& \operatorname{gd}\barz&=\overline{\operatorname{gd}z},& \operatorname{gd}(-\barz)&=-\overline{\operatorname{gd}z},\\[5mu] \operatorname{gd}-1(-z)&=-\operatorname{gd}-1z,& \operatorname{gd}-1\barz&=\overline{\operatorname{gd}-1z},& \operatorname{gd}-1(-\barz)&=-\overline{\operatorname{gd}-1z}. \end{aligned}
The functions are periodic, with periods and :
\begin{aligned} \operatorname{gd}(z+2\pii)&=\operatorname{gd}z,\\[5mu] \operatorname{gd}-1(z+2\pi)&=\operatorname{gd}-1z. \end{aligned}
A translation in the domain of by results in a half-turn rotation and translation in the codomain by one of and vice versa for [9]
\begin{aligned} \operatorname{gd}({\pm\pii}+z)&=\begin{cases} \pi-\operatorname{gd}z &if \operatorname{Re}z\geq0,\\[5mu] -\pi-\operatorname{gd}z &if \operatorname{Re}z<0, \end{cases}\\[15mu] \operatorname{gd}-1({\pm\pi}+z)&=\begin{cases} \pii-\operatorname{gd}-1z &if \operatorname{Im}z\geq0,\\[3mu] -\pii-\operatorname{gd}-1z &if \operatorname{Im}z<0. \end{cases} \end{aligned}
A reflection in the domain of across either of the lines results in a reflection in the codomain across one of the lines and vice versa for
\begin{aligned} \operatorname{gd}({\pm\pii}+\barz)&=\begin{cases} \pi-\overline{\operatorname{gd}z} &if \operatorname{Re}z\geq0,\\[5mu] -\pi-\overline{\operatorname{gd}z} &if \operatorname{Re}z<0, \end{cases}\\[15mu] \operatorname{gd}-1({\pm\pi}-\barz)&=\begin{cases} \pii+\overline{\operatorname{gd}-1z} &if \operatorname{Im}z\geq0,\\[3mu] -\pii+\overline{\operatorname{gd}-1z} &if \operatorname{Im}z<0. \end{cases} \end{aligned}
This is related to the identity
\tanh\tfrac12({\pii}\pmz)=\tan\tfrac12({\pi}\mp\operatorname{gd}z).
A few specific values (where indicates the limit at one end of the infinite strip):
\begin{align} \operatorname{gd}(0)&=0,& {\operatorname{gd}}l({\pm{log}l(2+\sqrt3r)}r)&=\pm\tfrac13\pi,\\[5mu] \operatorname{gd}(\pii)&=\pi,& {\operatorname{gd}}l({\pm\tfrac13}\piir)&=\pm{log}l(2+\sqrt3r)i,\\[5mu] \operatorname{gd}({\pminfty})&=\pm\tfrac12\pi,& {\operatorname{gd}}l({\pm{log}l(1+\sqrt2r)}r)&=\pm\tfrac14\pi,\\[5mu] {\operatorname{gd}}l({\pm\tfrac12}\piir)&=\pminftyi,& {\operatorname{gd}}l({\pm\tfrac14}\piir)&=\pm{log}l(1+\sqrt2r)i,\\[5mu] &&{\operatorname{gd}}l({log}l(1+\sqrt2r)\pm\tfrac12\piir)&=\tfrac12\pi\pm{log}l(1+\sqrt2r)i,\\[5mu] &&{\operatorname{gd}}l({-log}l(1+\sqrt2r)\pm\tfrac12\piir)&=-\tfrac12\pi\pm{log}l(1+\sqrt2r)i. \end{align}
As the Gudermannian and inverse Gudermannian functions can be defined as the antiderivatives of the hyperbolic secant and circular secant functions, respectively, their derivatives are those secant functions:
\begin{align} | d |
dz |
\operatorname{gd}z&=\operatorname{sech}z,\\[10mu]
d | |
dz |
\operatorname{gd}-1z&=\secz. \end{align}
By combining hyperbolic and circular argument-addition identities,
\begin{align} \tanh(z+w)&=
\tanhz+\tanhw | |
1+\tanhz\tanhw |
,\\[10mu] \tan(z+w)&=
\tanz+\tanw | |
1-\tanz\tanw |
, \end{align}
with the circular–hyperbolic identity,
\tan\tfrac12(\operatorname{gd}z)=\tanh\tfrac12z,
we have the Gudermannian argument-addition identities:
\begin{align} \operatorname{gd}(z+w)&=2\arctan
\tan\tfrac12(\operatorname{gd | |
z) |
+\tan\tfrac12(\operatorname{gd}w)} {1+\tan\tfrac12(\operatorname{gd}z)\tan\tfrac12(\operatorname{gd}w)},\\[12mu] \operatorname{gd}-1(z+w)&=2\operatorname{artanh}
\tanh\tfrac12(\operatorname{gd | |
-1 |
z)+\tanh\tfrac12(\operatorname{gd}-1w)} {1-\tanh\tfrac12(\operatorname{gd}-1z)\tanh\tfrac12(\operatorname{gd}-1w)}. \end{align}
Further argument-addition identities can be written in terms of other circular functions,[10] but they require greater care in choosing branches in inverse functions. Notably,
\begin{align} \operatorname{gd}(z+w)&=u+v, where \tanu=
\sinhz | |
\coshw |
, \tanv=
\sinhw | |
\coshz |
,\\[10mu] \operatorname{gd}-1(z+w)&=u+v, where \tanhu=
\sinz | |
\cosw |
, \tanhv=
\sinw | |
\cosz |
, \end{align}
which can be used to derive the per-component computation for the complex Gudermannian and inverse Gudermannian.[11]
In the specific case double-argument identities are
\begin{align} \operatorname{gd}(2z) &=2\arctan(\sin(\operatorname{gd}z)),\\[5mu] \operatorname{gd}-1(2z)&=2\operatorname{artanh}(\sinh(\operatorname{gd}-1z)). \end{align}
The Taylor series near zero, valid for complex values with are[12]
\begin{align} \operatorname{gd}z &=
infty | |
\sum | |
k=0 |
Ek | |
(k+1)! |
zk+1=z-
16z | |
3 |
+
1{24}z | |
5 |
-
61 | |
5040 |
z7+
277 | |
72576 |
z9-...,\\[10mu] \operatorname{gd}-1z &=
infty | |
\sum | |
k=0 |
|Ek| | |
(k+1)! |
zk+1=z+
16z | |
3 |
+
1{24}z | |
5 |
+
61 | |
5040 |
z7+
277 | |
72576 |
z9+..., \end{align}
where the numbers are the Euler secant numbers, 1, 0, -1, 0, 5, 0, -61, 0, 1385 ... (sequences,, and in the OEIS). These series were first computed by James Gregory in 1671.[13]
Because the Gudermannian and inverse Gudermannian functions are the integrals of the hyperbolic secant and secant functions, the numerators and are same as the numerators of the Taylor series for and, respectively, but shifted by one place.
The reduced unsigned numerators are 1, 1, 1, 61, 277, ... and the reduced denominators are 1, 6, 24, 5040, 72576, ... (sequences and in the OEIS).
The function and its inverse are related to the Mercator projection. The vertical coordinate in the Mercator projection is called isometric latitude, and is often denoted In terms of latitude on the sphere (expressed in radians) the isometric latitude can be written
\psi=\operatorname{gd}-1\phi=
\phi | |
\int | |
0 |
\sectdt.
The inverse from the isometric latitude to spherical latitude is (Note: on an ellipsoid of revolution, the relation between geodetic latitude and isometric latitude is slightly more complicated.)
Gerardus Mercator plotted his celebrated map in 1569, but the precise method of construction was not revealed. In 1599, Edward Wright described a method for constructing a Mercator projection numerically from trigonometric tables, but did not produce a closed formula. The closed formula was published in 1668 by James Gregory.
The Gudermannian function per se was introduced by Johann Heinrich Lambert in the 1760s at the same time as the hyperbolic functions. He called it the "transcendent angle", and it went by various names until 1862 when Arthur Cayley suggested it be given its current name as a tribute to Christoph Gudermann's work in the 1830s on the theory of special functions.Gudermann had published articles in Crelle's Journal that were later collected in a bookwhich expounded and to a wide audience (although represented by the symbols and ).
The notation was introduced by Cayley who starts by calling the Jacobi elliptic amplitude in the degenerate case where the elliptic modulus is so that reduces to This is the inverse of the integral of the secant function. Using Cayley's notation,
u=\int0
d\phi | |
\cos\phi |
={log\tan}l(\tfrac14\pi+\tfrac12\phir).
He then derives "the definition of the transcendent",
\operatorname{gd}u={
1i | |
log |
\tan}l(\tfrac14\pi+\tfrac12uir),
observing that "although exhibited in an imaginary form, [it] is a real function of
The Gudermannian and its inverse were used to make trigonometric tables of circular functions also function as tables of hyperbolic functions. Given a hyperbolic angle , hyperbolic functions could be found by first looking up in a Gudermannian table and then looking up the appropriate circular function of , or by directly locating in an auxiliary
\operatorname{gd}-1
The Gudermannian function can be thought of mapping points on one branch of a hyperbola to points on a semicircle. Points on one sheet of an n-dimensional hyperboloid of two sheets can be likewise mapped onto a n-dimensional hemisphere via stereographic projection. The hemisphere model of hyperbolic space uses such a map to represent hyperbolic space.
\Pi(\psi)=\tfrac12\pi-\operatorname{gd}\psi.