Toyota RAV4 EV explained

See main article: Toyota RAV4.

Toyota RAV4 EV
Manufacturer:Toyota
Class:Compact crossover SUV
Body Style:5-door SUV
Layout:Front-motor, front-wheel-drive
Successor:Toyota bZ4X
Sp:us

The Toyota RAV4 EV is an all-electric version of the popular RAV4 SUV produced by Toyota until 2014. Two generations of the EV model were sold in California, and to fleets elsewhere in the US, with a gap of almost ten years between them.

The first generation was leased from 1997 to 2003, and at the lessees' request, many units were sold after the vehicle was discontinued.[1] A total of 1,484 were leased and/or sold in California to meet the state's mandate for zero-emissions vehicle. A small number were sold or leased in fleet sales in other states. As of mid-2012, there were almost 500 vehicles still in use in California.[2] Production of the second generation EV was limited to 2,600 units during a three-year run, with sales limited to California beginning in 2012.[3] Production ended in September 2014.[4] A total of 2,489 units of the second generation model were sold in California through April 2015.

Toyota worked together with Tesla Motors and Panasonic to develop the second generation RAV4 EV, and the electric SUV was released in the United States in September 2012.[3] The US Environmental Protection Agency rated the second generation RAV4 EV with a range of 103miles and a combined fuel economy rating of 76 miles per gallon gasoline equivalent (76mpgus).

First generation (1997)

First generation
Production:1997 - 2003
Assembly:Japan: Toyota, Aichi (Motomachi plant); Tahara, Aichi (Tahara plant)
Motor:50kW, 190abbr=onNaNabbr=on[5] synchronous permanent-magnet
Transmission:Single-speed
Battery:Panasonic NiMH
Range:95miles (EPA)
Wheelbase:94.90NaN0
Length:156.70NaN0
Width:66.70NaN0
Height:64.40NaN0
Weight:3440lb[6]
Charging:6kW 100240V onboard charger for 1ϕ 30A using Magne Charge connector

The first fleet version of the RAV4 EV became available on a limited basis in 1997. In 2001 it was possible for businesses, cities or utilities to lease one or two of these cars. Toyota then actually sold or leased 328 RAV4 EVs to the general public in 2003, at which time the program was terminated despite waiting lists of prospective customers.

The RAV4 EV closely resembles the regular internal combustion engine (ICE) version - without a tailpipe - and has a governed top speed of with an EPA rated range of 95miles. The 95 amp-hour nickel–metal hydride battery (NiMH) has a capacity of, charges inductively and has proven to be very durable. Some RAV4 EVs have been driven more than 150000miles using the original battery pack. It was also one of the few vehicles with a single speed gearbox when introduced to the market.

Beyond the unusual power train (batteries, controller and motor), the remaining systems in the RAV4 EV are comparable to the gasoline-powered RAV4. The power brakes, power steering, tire wear and suspension components are similar except that they use electric power sources. The power brakes use an electric pump to provide vacuum instead of deriving vacuum from the engine manifold. The power steering use an electric motor instead of mechanical energy delivered by fan belts. The passenger compartment is heated and cooled electrically using a heat pump (the first fleet application of a heat pump in a road vehicle) with supplemental electrical resistance heating as backup.

Performance

The RAV4 EV production has a governed top speed of, a tested 0 to time of around 18 seconds (depending on state-of-charge on the batteries). Its EPA rated driving range is with an EPA combined fuel economy rating of 43 kW·h/100 mi (equivalent to 78 MPGe).[7] Actual fuel economy and range depends on the same factors as a traditional gasoline-powered vehicle including rolling resistance and average speed (aerodynamic drag).

The RAV4 EV battery pack uses 24 12-volt, 95Ah NiMH batteries capable of storing 27 kWh of energy.

Charging

Production vehicles use the Magne Charge connector, a inductive charging paddle produced by General Motors subsidiary Delco Electronics also used on other electric vehicles of the time including the EV1 and Chevy S10 EV.[8] The inlet was mounted on the front grille of the vehicle. When using a 6kW charging unit on a 240-volt, 30-amp circuit, the RAV4 EV's batteries can be recharged from being fully depleted to fully charged in about five hours, the process monitored by a passive battery balancing system.

Some RAV4 EV prototypes were charged via a front fender mounted conductive charger coupling made by Yazaki Corporation.

Mileage costs

Charging a RAV4 EV from full-dead to full-charge uses approximately 30 kW·h of electricity; the excess above the battery pack capacity is used by the charging system. At a rate of per kilowatt-hour, this costs around . As of May 2008, based on a gasoline price-per-gallon cost of and up and the non-EV 2003 RAV4 2-wheel-drive gasoline fuel efficiency of 27mpgus, the RAV4 EV costs approximately 5 times less a per mile basis, and makes mileage in the RAV4 EV the cost equivalent to a 111.1mpgus small SUV.

In addition, the RAV4 EV has a charge timer built into the dashboard that enables the vehicle to start charging at a specific time. As the RAV4 EV easily becomes the main cost of electricity in an average-sized home, this enables the owner to use a Time-Of-Day Meter to reduce electricity costs. This configuration is a standard practice with RAV4 EV owners. The price of electricity at night depends on the carrier, but is usually in the range of 60% of the normal rate. In the use of charging the RAV4 EV, this equates to a cheaper cost-per-mile, roughly equivalent to a vehicle capable of 166.6mpgus, based on a price of per gallon.

The United States Environmental Protection Agency listed mileage ratings for the RAV4 EV in its yearly Fuel Economy Guide from 2000 through 2003. The 2003 model recorded fuel efficiency of 39 kW·h/100 mi city, 49 kW·h/100 mi highway; the city mileage rating was equivalent to 125mpgus, and 100mpgus on the highway.[9] The EPA rated combined mileage was 112mpgus.

In 2007, the EPA updated its rating system and revised the ratings to a city equivalent of 87mpgus, highway equivalent of 69mpgus, and a combined equivalent of 78mpgus.[7]

Consumable items

The RAV4 EV's battery system is a consumable item. Toyota reports that battery pack replacement costs are currently higher than the value of the used vehicle.[10] Toyota tested the RAV4 EV in Japan for 300000miles over two years before introducing the vehicle in the United States. The economies of scale are affecting the replacement cost of the RAV4 EV.

Prototyping

RAV4 EV pre-production prototypes were first released in a confidential evaluation program with electric utilities throughout the U.S. These prototypes were based on the smaller, shorter, two-door version of the RAV4. The prototypes included some versions fitted with Panasonic NiMH batteries, and others with high-performance Panasonic lead–acid PbA batteries (the same ones that eventually found their way into the EV1 and other production GM electric vehicles). The RAV4 EV prototypes also were equipped with on-board level 2 chargers and connected via a front fender conductive charger coupling made by Yazaki Corporation. Both prototypes were well accepted.

The utility employee evaluators did not have to personally pay for the more costly and advanced NiMH batteries, and the NiMH RAV4 EV prototype received better reviews, due to its increased range. Its energy efficiency, however, was not as good as the PbA version. Due to the impracticality of developing two battery types for a limited volume program, Toyota opted for the higher-performance, higher-cost NiMH RAV4 EV. This resulted in a greater manufacturing cost, and higher purchase price.

A number of electric vehicle advocates voiced disappointment that the choice was made to manufacture only the NiMH version. Many electric vehicle advocates claimed that automaker's choice of the NiMH battery worked against the 1990s deployment of cost-effective electric vehicles based on PbA batteries, and that further development of lead–acid technology could result in performance equal to NiMH, but at a substantially lower price. Their argument was that a usable electric vehicle is possible at a substantially lower price, and that the lower purchase price would foster greater acceptance of electric vehicles. In fact, lithium-ion batteries soon displaced both nickel and lead from electromobiles.

Corporate purchasing

Initially, RAV4 EVs were only available for three-year fleet lease, not for sale and not for lease to the public, at a few dealerships beginning in 1997. From 2001, leases were made available to small "fleets of one" purportedly run by small businesses.

Public availability

In March 2002, due to a shift in corporate policy, the Toyota RAV4-EV was made available for sale to the general public. All 328 that Toyota made were sold. No one knows for certain what prompted Toyota to change their position on the RAV4-EV, since they had long since fulfilled their obligations under the MOA with the California Air Resources Board's zero-emissions vehicle (ZEV) mandate via its fleet lease program.

The MSRP was ; but in California, ZIP-grant rebates of, decreasing in 2003 to, and a credit from the Internal Revenue Service brought the price down to a more palatable (for some 2003 deliveries), including the home charger.[11]

More RAV4-EVs were sold than had been planned for manufacture through standard assembly line techniques. Toyota filled every order despite the fact that the last few dozen vehicles had to be assembled from spare parts due to a shortfall of production components (a significantly more expensive way of building a vehicle). This unexpected development caused deliveries to trickle on into September 2003. It also caused variations in the vehicles such as heated seats, retractable antennae, mats, etc.

The last of the 328 EVs was sold in November 2002.

Sales

A total of 1,484 were leased and/or sold in California.[12] [13]

Chevron patent encumbrance

See main article: Patent encumbrance of large automotive NiMH batteries. Whether or not Toyota wanted to continue production, it was unlikely to be able to do so because the battery was no longer available. Chevron had inherited control of the worldwide patent rights for the NiMH battery when it merged with Texaco, which had purchased them from General Motors. Chevron's unit won a settlement from Toyota and Panasonic, the manufacturer of the battery, and the production line for the large NiMH batteries was closed down and dismantled. This case was settled in the ICC International Court of Arbitration, and not publicized due to a gag order placed on Toyota.[14] [15] Only smaller NiMH batteries, incapable of powering an electric vehicle or plugging in, were allowed by Chevron-Texaco.[16]

Second generation (2012)

Second generation
Production:2012 - 2014
Assembly:Canada: Woodstock, Ontario (TMMC)
Motor:115kW from Tesla Motors
Transmission:Single-speed transaxle, 9.73:1 ratio
Battery:Panasonic lithium-ion
Range:103miles (EPA)
Wheelbase:2560-
Length:4395-
Width:1815-
Weight:4030lb
Charging:9.6kW 100240V onboard charger for 1ϕ 40A using SAE J1772 connector

The second generation RAV4 EV was released in September 2012 starting at a price of before any government incentives.[3] [17] Toyota also offered a 36-month lease option at per month with down payment of .[17] The RAV4 EV was sold only in California, and sales began in the San Francisco Bay Area, Los Angeles/Orange County and San Diego. Production was limited to 2,600 during three years.[3] [18] [19] The RAV4 EV was available to individual consumers and fleet customers.[20] Due to the capacity of its battery pack the RAV4 EV qualified for the maximum federal tax credit and also was eligible for a rebate in California.[21] A total of 192 units were sold during 2012 and 1,096 during 2013.[22] A total of 2,489 units were sold in the U.S. through April 2015.[22] [23] [24] The production run ended in September 2014.[4]

History

The first prototype was built in just three weeks after the signing of a joint development agreement where Toyota helped the then fledgling electric automaker Tesla start production in the NUMMI factory Toyota was vacating in Fremont, California. Toyota's partner Panasonic was also involved in the development, just as when Toyota developed the first generation of the RAV4 EV.[25] The electric SUV was developed by Tesla and Toyota Technical Center U.S.A. in Michigan. Testing began in July 2010.[26] [27]

A demonstrator was unveiled at the November 2010 Los Angeles Auto Show. Toyota built 35 of these converted RAV4s (Phase Zero vehicles) for a demonstration and evaluation program that ran through 2011. The lithium metal-oxide battery and other power train components were supplied by Tesla.[28] [29] These prototypes had a 660abbr=onNaNabbr=on lithium-ion battery pack with a 50 kWh total capacity (37 kWh usable) and achieved a range of between 80miles120miles.[30] The prototypes used components from the Tesla Roadster (first generation).[31] [32]

On July 15, 2011, Tesla entered into a supply and services agreement with Toyota for the supply of a validated electric powertrain system, including a battery, charging system, inverter, motor, gearbox and associated software.[33]

The re-engineered RAV4 EV production version (Phase One vehicle) was unveiled at the May 2012 International Electric Vehicle Symposium in Los Angeles.[34] Production models use the SAE J1772 charging standard.[35] The battery pack, electronics and powertrain components in the production version are similar to those in used in the Tesla Model S sedan launched in June 2012.

Powertrain

The second generation RAV4 EV combines an electric powertrain from Tesla and a battery produced by Panasonic in a chassis built by Toyota.

The electric motor supplied by Tesla is an AC induction motor, a departure from Toyota's practice of using synchronous permanent-magnet motors in their hybrid electric vehicles. A fixed-gear open-differential transaxle has a gear ratio of 9.73. The RAV4 EV weighs 4030lb, 470lb heavier than a front-wheel drive RAV4 Limited with the V-6 engine.

The RAV 4 offers two drive modes: Normal and Sport. Peak power output of the motor is 115kW, with peak torque in normal mode of 296abbr=onNaNabbr=on, and peak torque in sport mode of 370abbr=onNaNabbr=on. Maximum vehicle speed in Normal mode is 85mph, and maximum in Sport mode, which also has a more aggressive accelerator pedal feel, is 100mph. The US Environmental Protection Agency rated the RAV4 EV combined economy at 76mpge, with 78mpge in city driving and 74mpge on highways. While the quarter mile time is not officially rated from Toyota, the RAV4 EV (FWD) Facebook community has posted dragslip results of 15.71s at . This is only marginally slower than the RAV4 V6 AWD (with 269HP) which has published quarter mile times of 14.8-14.9 at .

Battery and range

The battery pack is a 386 V lithium-ion battery pack comprising about 4,500 cells and rated at 41.8 kW·h of usable energy at full charge, with a maximum power output of 129 kW. The RAV4 EV features a 10 kW onboard charger (SAE J1772 240 V, 40 A input).[31] The battery pack is located below the floorpan, reducing the ground clearance as compared with the gasoline-powered version by a couple of inches, but the electric SUV's cargo space of is the same as its gasoline sibling. The battery pack weighs 840lb and because it is located in the lowest part of the vehicle, the lower center of gravity provides a better handling than the conventional Toyota RAV4.[2] The RAV4 EV has two charge modes: Standard and Extended. In standard mode, the high voltage battery charges only up to 35 kWh and Toyota expected the electric SUV to achieve an EPA driving range rating of 92miles for this charging mode. Extended mode allows the battery to charge to its full usable capacity of 41.8 kWh, providing an expected EPA driving range of 113miles according to Toyota estimates.[31] The EPA rated just one range of 103miles.[17] Standard mode is designed to optimize battery life over range; however, the 8-year, 100,000-mile battery warranty cover the packs regardless of the mix of charge modes over the pack's life. However, due to EPA's procedures, Toyota expects the Monroney label to show the combined range of 103miles.[2] [31]

Charging time with a 40 A/240 V charging station is 5 hours in Standard Mode and 6 hours for Extended Mode; the onboard charger delivers 9.6 kW. Toyota had arranged with Leviton to offer a custom level 2 charging station priced at including basic installation.[36] On the other end of the scale, and due to its large battery pack, charging at 120 volts with the cord that comes standard under the rear deck takes 44 hours for Standard Mode and 52 hours for Extended Mode.[2] [31] An aftermarket company called Quick Charge Power [37] has come up with a way to add 48 kW CHAdeMO DC Quick Charging to the RAV4ev which dramatically shortens charge times for the 41.8 kWh battery. This can make the car tremendously more useful in areas where this charging infrastructure exists.

Production

The RAV4 EV began assembly in 2012 at Toyota Motor Manufacturing Canada in Woodstock, Ontario alongside the regular gasoline version. Tesla built the electric powertrain at its plant at Toyota's old NUMMI facility, now the Tesla Fremont Factory, in Fremont, California, and then shipped them to Canada.[38] [39] About 2,500 RAV4 EV vehicles were built between 2012 and 2014. The battery supply deal between Toyota and Tesla concluded with the end of production in August 2014.[40] In 2017, Toyota sold all its shares in Tesla.[41]

See also

External links

Notes and References

  1. Book: Sherry Boschert . Sherry Boschert . Plug-in Hybrids: The Cars that will Recharge America . 2006 . New Society Publishers, Gabriola Island, Canada . 978-0-86571-571-4 . registration .
  2. Web site: 2012 Toyota RAV4 EV: First Drive Of Tesla-Powered Crossover. John Voelcker. 2012-08-02. Green Car Reports. 2012-08-04.
  3. Web site: Toyota introduces new RAV4 EV; 41.8 kWh pack, 100-mile range . Toyota Motor Sales, U.S.A.. Green Car Congress. 2012-05-07. 2012-05-09.
  4. Web site: Toyota Wraps Up Production of RAV4 EV. Brad Berman. PluginCars.com. 2014-09-24. 2015-06-20.
  5. Web site: Dickey. Darell. Rav4EV Data. EVNut.com web site. 2014-02-20.
  6. Web site: Dickey. Darell. Rav4EV FAQ (Owner - 2002(3) and earlier). EVNut.com web site. 2014-02-20.
  7. Web site: Compare Side-by-Side, 2003 Toyota RAV4 EV. www.fueleconomy.gov. U.S. Department of Energy. 2014-02-19.
  8. Web site: 2008.03.15 EVAoSC Meeting at AQMD - PV Solar EV Chargeport . Also available in a couple of the parking stalls are Small Paddle Inductive (SPI) TAL MagneCharge chargers usable with the remaining fleet of Toyota RAV4EVs . Electric Vehicle Association of Southern California . 2008-03-15 . 2011-05-21 . dead . https://web.archive.org/web/20080620125236/http://www.stefanoparis.com/piaev/WhyWeNeedPlugIns/2008.03.15EVAoSC/2008.03.15EVAoSC.html . 2008-06-20.
  9. Web site: Compare Old and New EPA MPG Estimates - 2003 Toyota RAV4 EV. fueleconomy.gov. U.S. Department of Energy. 2014-02-20.
  10. Web site: RAV4 EV . Toyota . US . 2011-01-07 . dead . https://web.archive.org/web/20101116082515/http://www.toyota.com/vehicles/rav4ev/ . 2010-11-16.
  11. Actor/Environmentalist Ed Begley, Jr. Is First Retail Customer of a Toyota RAV4-EV. https://archive.today/20130105170606/http://tech.groups.yahoo.com/group/ETList/message/446. dead. January 5, 2013. Toyota Motor Sales, USA, Inc.. 2002-03-04. 2009-09-01.
  12. News: Toyota and Tesla Plan an Electric RAV4. Jim Motavalli. New York Times. 2010-07-16. 2010-07-18.
  13. Web site: Toyota Concept Vehicles-- RAV4 EV . 2012-01-22 . Toyota USA . dead . https://web.archive.org/web/20120123133646/http://www.toyota.com/concept-vehicles/rav4ev.html . 2012-01-23 .
  14. Web site: The NiMH Battery Industry Pelican Brief... Of A Sort . Evworld.com . 2011-01-07 . https://web.archive.org/web/20100103005354/http://evworld.com/blogs/index.cfm?authorid=51&blogid=104&archive=1 . 2010-01-03 . dead.
  15. Web site: NIMH Battery Patent Lawsuit . Ovonic.com . 2011-01-07 . unfit . https://web.archive.org/web/20040717233048/http://www.ovonic.com/PDFs/Financial_Reports/form_8k/8k_mbi_patent_infringe_settlement_7july04.pdf . 2004-07-17.
  16. Web site: NiMH Batteries: Obsolete Technology or Suppressed EV Solution?. Forbes Bagatell-Black. 2007-02-23. EV World. 2009-09-01. 2011-01-08. https://web.archive.org/web/20110108033850/http://evworld.com/article.cfm?storyid=1198. dead.
  17. News: 2012 Toyota RAV4 EV Gets EPA-Rated 103-Mile Range, 76 MPGe Combined. Karla Sanchez. Motor Trend. 2012-09-14. 2012-09-19.
  18. Web site: Toyota Planning More EVs; Expecting Regional Demand for Prius Plug-In. Christie Schweinsberg. Ward Auto. 2011-08-10. 2011-08-11. https://web.archive.org/web/20110825154655/http://wardsauto.com/ar/toyota_evs_prius_110810/. 2011-08-25. dead.
  19. Web site: Toyota Confirms Limited Production of Electric RAV4 and Scion iQ in 2012. Brad Berman. PluginCars.com. 2012-01-16. 2012-01-22.
  20. Web site: Toyota to sell RAV4 EV to public and fleets in 2012. Green Car Congress. 2011-07-19. 2011-07-19.
  21. News: The All-Electric Toyota RAV4 EV First Drive. Toyota PR Newswire. The Sacramento Bee. 2012-08-04. 2012-08-04.
  22. Web site: December 2013 Dashboard. Jeff Cobb. HybridCars.com and Baum & Associates. 2014-01-06. 2014-08-20.
  23. News: November 2014 Dashboard. Jeff Cobb. HybridCars.com and Baum & Associates. 2014-12-03. 2014-12-07. See section "November 2014 Battery Electric Car Sales Numbers"
  24. News: April 2015 Dashboard. Jeff Cobb. HybridCars.com and Baum & Associates. 2015-05-02. 2015-06-20. A total of 17 RAV4 EVs and 1 Honda Fit EV were sold during the first four months of 2015.
  25. News: Toyota thinks outside the box . 2010-12-21. Nobuyuki Kojima and Takanori Yamamoto . Yomiuri Shimbun .
  26. Web site: Tesla and Toyota Formalize Agreement to Develop Electric Version of RAV4; Targeting US Sales in 2012. Green Car Congress. 2010-07-16. 2010-07-16.
  27. Web site: Tesla and Toyota to develop RAV4 EV, hope to launch in 2012. Autoblog. 2010-07-16. 2010-07-16.
  28. Web site: Toyota unveils RAV4 EV demonstration vehicle; targeting engineered version in 2012 for market. Green Car Congress. 2010-11-17. 2010-11-18.
  29. News: 2012 Toyota RAV4-EV: Take Two. Tori Tellem. New York Times. 2010-11-17. 2010-11-18.
  30. News: Ben Wojdyla . 2011-04-26 . 2012 Toyota RAV4 EV Prototype Test Drive . . 2011-05-07.
  31. Web site: 2012-08-10 . Toyota RAV4 EV key for meeting California ZEV requirements; Tesla powertrain uses Model S components . 2012-08-04 . Green Car Congress.
  32. News: Jerry Garrett . 2012-08-03 . Toyota and Tesla Trot Out the RAV4 EV . . 2012-08-04.
  33. http://green.autoblog.com/2011/07/20/tesla-scores-100-million-toyota-rav4-ev-related-contract/ Tesla scores $100 million Toyota RAV4 EV-related contract
  34. Web site: Toyota to debut new RAV4 EV at EVS 26. Toyota Motor Sales USA. Green Car Congress. 2012-04-30. 2012-04-30.
  35. Web site: Autoblog Green Quick Spin: Toyota RAV4 EV 2012. Autoblog Green. 2011-04-11. 2011-04-15.
  36. Web site: Charging Solutions For The RAV4 EV. 2013-01-25.
  37. shop.QuickChargePower.com
  38. Web site: Ontario gets Toyota's first non-Japan electric vehicle. Reuters. 2011-08-05. 2011-08-05.
  39. News: Tesla-Powered Toyota RAV4 E.V. to Be Built in Canada, Not California. Jim Motavalli. The New York Times. 2011-08-05. 2011-08-10.
  40. News: Tesla Says Battery-Supply Deal for Toyota RAV4 EV to End. Alan Ohnsman. . 2014-05-10. 2014-08-20.
  41. News: Toyota Sells Stake in Tesla . Industry Week . US . 2017-06-04 . 2022-08-03.