Total derivative explained
In mathematics, the total derivative of a function at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as considering all partial derivatives simultaneously. The term "total derivative" is primarily used when is a function of several variables, because when is a function of a single variable, the total derivative is the same as the ordinary derivative of the function.[1]
The total derivative as a linear map
Let
be an open subset. Then a function
is said to be (
totally)
differentiable at a point
if there exists a
linear transformation
such that
\limx
| \|f(x)-f(a)-dfa(x-a)\| |
\|x-a\| |
=0.
is called the (
total)
derivative or (
total)
differential of
at
. Other notations for the total derivative include
and
. A function is (
totally)
differentiable if its total derivative exists at every point in its domain.
Conceptually, the definition of the total derivative expresses the idea that
is the best linear approximation to
at the point
. This can be made precise by quantifying the error in the linear approximation determined by
. To do so, write
f(a+h)=f(a)+dfa(h)+\varepsilon(h),
where
equals the error in the approximation. To say that the derivative of
at
is
is equivalent to the statement
\varepsilon(h)=o(\lVerth\rVert),
where
is little-o notation and indicates that
is much smaller than
as
. The total derivative
is the
unique linear transformation for which the error term is this small, and this is the sense in which it is the best linear approximation to
.
The function
is differentiable if and only if each of its components
is differentiable, so when studying total derivatives, it is often possible to work one coordinate at a time in the codomain. However, the same is not true of the coordinates in the domain. It is true that if
is differentiable at
, then each partial derivative
exists at
. The converse does not hold: it can happen that all of the partial derivatives of
at
exist, but
is not differentiable at
. This means that the function is very "rough" at
, to such an extreme that its behavior cannot be adequately described by its behavior in the coordinate directions. When
is not so rough, this cannot happen. More precisely, if all the partial derivatives of
at
exist and are continuous in a neighborhood of
, then
is differentiable at
. When this happens, then in addition, the total derivative of
is the linear transformation corresponding to the
Jacobian matrix of partial derivatives at that point.
[2] The total derivative as a differential form
When the function under consideration is real-valued, the total derivative can be recast using differential forms. For example, suppose that
is a differentiable function of variables
. The total derivative of
at
may be written in terms of its Jacobian matrix, which in this instance is a row matrix:
Dfa=\begin{bmatrix}
(a)& … &
(a)\end{bmatrix}.
The linear approximation property of the total derivative implies that if
\Deltax=\begin{bmatrix}\Deltax1& … &\Deltaxn\end{bmatrix}T
is a small vector (where the
denotes transpose, so that this vector is a column vector), then
f(a+\Deltax)-f(a) ≈ Dfa ⋅ \Deltax=
(a) ⋅ \Deltaxi.
Heuristically, this suggests that if
are
infinitesimal increments in the coordinate directions, then
In fact, the notion of the infinitesimal, which is merely symbolic here, can be equipped with extensive mathematical structure. Techniques, such as the theory of differential forms, effectively give analytical and algebraic descriptions of objects like infinitesimal increments,
. For instance,
may be inscribed as a
linear functional on the vector space
. Evaluating
at a vector
in
measures how much
points in the
th coordinate direction. The total derivative
is a linear combination of linear functionals and hence is itself a linear functional. The evaluation
measures how much
points in the direction determined by
at
, and this direction is the
gradient. This point of view makes the total derivative an instance of the
exterior derivative.
Suppose now that
is a vector-valued function, that is,
. In this case, the components
of
are real-valued functions, so they have associated differential forms
. The total derivative
amalgamates these forms into a single object and is therefore an instance of a
vector-valued differential form.
The chain rule for total derivatives
See main article: Chain rule.
The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions
and
, the total derivative of the
composite function
at
satisfies
d(f\circg)a=dfg(a) ⋅ dga.
If the total derivatives of
and
are identified with their Jacobian matrices, then the composite on the right-hand side is simply matrix multiplication. This is enormously useful in applications, as it makes it possible to account for essentially arbitrary dependencies among the arguments of a composite function.
Example: Differentiation with direct dependencies
Suppose that f is a function of two variables, x and y. If these two variables are independent, so that the domain of f is
, then the behavior of
f may be understood in terms of its partial derivatives in the
x and
y directions. However, in some situations,
x and
y may be dependent. For example, it might happen that
f is constrained to a curve
. In this case, we are actually interested in the behavior of the composite function
. The partial derivative of
f with respect to
x does not give the true rate of change of
f with respect to changing
x because changing
x necessarily changes
y. However, the chain rule for the total derivative takes such dependencies into account. Write
. Then, the chain rule says
By expressing the total derivative using Jacobian matrices, this becomes:
(x0)=
(x0,y(x0)) ⋅
(x0)+
(x0,y(x0)) ⋅
(x0).
Suppressing the evaluation at
for legibility, we may also write this as
This gives a straightforward formula for the derivative of
in terms of the partial derivatives of
and the derivative of
.
For example, suppose
The rate of change of
f with respect to
x is usually the partial derivative of
f with respect to
x; in this case,
However, if
y depends on
x, the partial derivative does not give the true rate of change of
f as
x changes because the partial derivative assumes that
y is fixed. Suppose we are constrained to the line
Then
and the total derivative of
f with respect to
x is
which we see is not equal to the partial derivative
. Instead of immediately substituting for
y in terms of
x, however, we can also use the chain rule as above:
Example: Differentiation with indirect dependencies
While one can often perform substitutions to eliminate indirect dependencies, the chain rule provides for a more efficient and general technique. Suppose
is a function of time
and
variables
which themselves depend on time. Then, the time derivative of
is
=
Ll(t,x1(t),\ldots,xn(t)r).
The chain rule expresses this derivative in terms of the partial derivatives of
and the time derivatives of the functions
:
This expression is often used in physics for a gauge transformation of the Lagrangian, as two Lagrangians that differ only by the total time derivative of a function of time and the
generalized coordinates lead to the same equations of motion. An interesting example concerns the resolution of causality concerning the Wheeler–Feynman time-symmetric theory. The operator in brackets (in the final expression above) is also called the total derivative operator (with respect to
).
For example, the total derivative of
is
={\partialf\over\partialx}{dx\overdt}+{\partialf\over\partialy}{dy\overdt}.
Here there is no
term since
itself does not depend on the independent variable
directly.
Total differential equation
See main article: Total differential equation. A total differential equation is a differential equation expressed in terms of total derivatives. Since the exterior derivative is coordinate-free, in a sense that can be given a technical meaning, such equations are intrinsic and geometric.
Application to equation systems
In economics, it is common for the total derivative to arise in the context of a system of equations.[1] For example, a simple supply-demand system might specify the quantity q of a product demanded as a function D of its price p and consumers' income I, the latter being an exogenous variable, and might specify the quantity supplied by producers as a function S of its price and two exogenous resource cost variables r and w. The resulting system of equations
determines the market equilibrium values of the variables
p and
q. The total derivative
of
p with respect to
r, for example, gives the sign and magnitude of the reaction of the market price to the exogenous variable
r. In the indicated system, there are a total of six possible total derivatives, also known in this context as
comparative static derivatives:,,,,, and . The total derivatives are found by totally differentiating the system of equations, dividing through by, say, treating and as the unknowns, setting, and solving the two totally differentiated equations simultaneously, typically by using
Cramer's rule.
See also
- - generalization of the total derivative
References
- A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003.
- From thesaurus.maths.org total derivative
External links
Notes and References
- Book: Chiang, Alpha C. . Alpha Chiang . Fundamental Methods of Mathematical Economics . registration . McGraw-Hill . Third . 1984 . 0-07-010813-7 .
- Book: Ralph . Abraham . Ralph Abraham (mathematician) . J. E. . Marsden . Jerrold E. Marsden . Tudor . Ratiu . Tudor Ratiu . Manifolds, Tensor Analysis, and Applications . Springer Science & Business Media . 2012 . 78 . 9781461210290 .