EHP spectral sequence explained

In mathematics, the EHP spectral sequence is a spectral sequence used for inductively calculating the homotopy groups of spheres localized at some prime p. It is described in more detail in and . It is related to the EHP long exact sequence of ; the name "EHP" comes from the fact that George W. Whitehead named 3 of the maps of his sequence "E" (the first letter of the German word "Einhängung" meaning "suspension"), "H" (for Heinz Hopf, as this map is the second Hopf–James invariant), and "P" (related to Whitehead products).

For

p=2

the spectral sequence uses some exact sequences associated to the fibration

Sn(2)\OmegaSn+1(2)\OmegaS2n+1(2)

,where

\Omega

stands for a loop space and the (2) is localization of a topological space at the prime 2. This gives a spectral sequence with
k,n
E
1
term equal to

\pik+n(S2(2))

and converging to
S(2)
\pi
*
(stable homotopy groups of spheres localized at 2). The spectral sequence has the advantage that the input is previously calculated homotopy groups. It was used by to calculate the first 31 stable homotopy groups of spheres.

For arbitrary primes one uses some fibrations found by :

\widehatS2n(p)\OmegaS2n+1(p)\OmegaS2pn+1(p)

S2n-1(p)\Omega\widehatS2n(p)\OmegaS2pn-1(p)

where

\widehatS2n

is the

(2np-1)

-skeleton of the loop space

\OmegaS2n+1

. (For

p=2

, the space

\widehatS2n

is the same as

S2n

, so Toda's fibrations at

p=2

are the same as the James fibrations.