Timothy M. Swager Explained
Timothy M. Swager (born 1961) is an American Scientist and the John D. MacArthur Professor of Chemistry at the Massachusetts Institute of Technology. His research is at the interface of chemistry and materials science, with specific interests in carbon nanomaterials, polymers, and liquid crystals. He is an elected member of the National Academy of Sciences, American Academy of Arts and Sciences, and the National Academy of Inventors.
Career and research
A native of Sheridan Montana, Swager earned his BS in Chemistry from Montana State University, received a PhD from the California Institute of Technology working with Robert H. Grubbs, and performed postdoctoral studies at the Massachusetts Institute of Technology under Mark S. Wrighton. He began as an assistant professor at the University of Pennsylvania in 1990 and returned to MIT in 1996 as a Full Professor. Swager is best known for advancing new chemical sensing concepts based on molecular electronic principles. He introduced the concepts of charge and energy transport through molecular and nanowires as a method to create amplified signals to chemical events.[1] [2] These methods gave rise to the sensitive explosive sensors that have been commercialized under the trade name Fido.[3] He demonstrated the integration of molecular recognition into chemiresistive sensors, first with conducting polymers[4] and later with carbon nanotubes,[5] [6] and these methods were first commercialized by CSense.[7] He is also the cofounder of PolyJoule Inc.[8] that produces organic batteries for stationary energy storage, and founded Xibus Systems[9] that is developing improved methods for pathogenic bacteria detection in food production.
Swager also has pioneering contributions to the areas of liquid crystals demonstrating how novel molecular shapes can be used to introduce intermolecular correlations in structures and alignment.[10] In the area of high strength materials, by creating interlocking structures with enhanced ductility and strength.[11] In carbon nanomaterials he has developed methods for functionalizing and/or dispersing graphenes and carbon nanotubes.[12] [13] [14] [15] Also he has designed novel radical materials in collaboration with Robert G. Griffin (MIT) for dynamic nuclear polarization to enhance the signal to noise ratio in NMR experiments.[16] A number of these enhancement agents are commercially available from DyNuPol Corp.[17] Swager has published more than 500 peer reviewed manuscripts and has more than 100 issued patents. As of January 2024, he has a Hirsch index of 120.
Notable awards
Bibliography
- Swager, T. M.; Xu, B. "Liquid Crystalline Calixarenes" pages 389–398. in Calixarenes 50th Anniversary: Commemorative Issue Vicens, J.; Asfari, Z.; Harrowfeild, J. M. (Eds.) Kluwer Academic Publishers, Holland, 1994
- Swager, T. M. "Polymer Electronics for Explosives Detection" pages 29–38 in Electronic Noses and Sensors for the Detection of Explosives, Gardner J.; Yinon, J., (Eds.) NATO Science Series II: Mathematics, Physics and Chemistry, 2004
- Tovar, J. D.; Swager, T. M. "Synthesis of Tunable Electrochromic and Fluorescent Polymers" Chapter 28, pp 368–376 in Chromogenic Phenomena in Polymers, Jenekhe, S. A.; Kiserow, D. J. (Eds.) ACS Symposium Series, Volume 888, 2004
- Swager, T. M. "Semiconducting Poly(arylene ethylene)s" pages 233–258 in Acetylene Chemistry: Chemistry, Biology, and Materials Science, Diederich, F.; Stang, P. J.; Tykwinski, R. R. (Eds.) Wiley-VCH 2005
- Swager, T. M. "Realizing the Ultimate Amplification in Conducting Polymer Sensors: Isolated Nanoscopic Pathways" pages 29–44 in Redox Systems Under Nano-Space Control, Hirao, T. (Ed.) Springer-Verlag Berlin Heidelberg 2006
- Thomas, S. W., III; Swager, T. M. "Detection of Explosives Using Amplified Fluorescent Polymers" pages 203–220 in Detection of Illicit Chemicals and Explosives; Oxley, J. C.; Marshall, M., (Eds.) Elsevier: New York, 2008.
- B. VanVeller, T. M. Swager, "Poly(aryleneethynylene)s" pages 175–200 in Design and Synthesis of Conjugated Polymers, M. Leclerc, J. Morin (Eds.) Wiley-VCH: Weinheim, 2010.
- Andrew, T. L.; Swager, T. M. "Exciton Transport through Conjugated Molecular Wires" in Charge and Exciton Transport through Molecular Wires Siebbeles, L. D. A.; Grozema, F. C. (Eds.) Wiley-VCH: Weinheim 2010
- Levine, M.; Swager, T. M. "Conjugated Polymer Sensors: Design, Principles, and Biological Applications" Chapter 4, Pages 81–133, in Functional Supramolecular Architectures: for Organic Electronics and Nanotechnology Vol. 1 Samori, P.; Cacialli, F. (Eds.) Wiley-VCH: Weinheim 2010
Notes and References
- Swager . Timothy M. . The Molecular Wire Approach to Sensory Signal Amplification . Accounts of Chemical Research . American Chemical Society (ACS) . 31 . 5 . April 4, 1998 . 0001-4842 . 10.1021/ar9600502 . 201–207.
- Fennell . John F. . Liu . Sophie F. . Azzarelli . Joseph M. . Weis . Jonathan G. . Rochat . Sébastien . Mirica . Katherine A. . Ravnsbæk . Jens B. . Swager . Timothy M. . Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future . Angewandte Chemie International Edition . Wiley . 55 . 4 . December 11, 2015 . 1433-7851 . 10.1002/anie.201505308 . 1266–1281. 26661299 . 1721.1/115094 . 11028237 . free .
- Web site: Threat Detection | Teledyne FLIR.
- Thomas . Samuel W. . Joly . Guy D. . Swager . Timothy M. . 2007-04-01 . Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers . Chemical Reviews . en . 107 . 4 . 1339–1386 . 10.1021/cr0501339 . 17385926 . 0009-2665.
- Schroeder . Vera . Savagatrup . Suchol . He . Maggie . Lin . Sibo . Swager . Timothy M. . 2019-01-09 . Carbon Nanotube Chemical Sensors . Chemical Reviews . en . 119 . 1 . 599–663 . 10.1021/acs.chemrev.8b00340 . 0009-2665 . 6399066 . 30226055.
- Luo . Shao-Xiong Lennon . Swager . Timothy M. . 2023-09-28 . Chemiresistive sensing with functionalized carbon nanotubes . Nature Reviews Methods Primers . en . 3 . 1 . 10.1038/s43586-023-00255-6 . 263158626 . 2662-8449.
- Web site: Sensing Solutions for a Healthier and Safer World. C2Sense. October 17, 2021.
- Web site: Ultra-safe Energy Storage. PolyJoule. January 8, 2023.
- Web site: Revolutionizing food and beverage safety. Xibus.Systems. January 8, 2023.
- Serrette . Andre G. . Swager . Timothy M. . Controlling intermolecular associations with molecular superstructure: polar discotic linear chain phases . Journal of the American Chemical Society . American Chemical Society (ACS) . 115 . 19 . 1993 . 0002-7863 . 10.1021/ja00072a067 . 8879–8880.
- Tsui . Nicholas T. . Paraskos . Alex J. . Torun . Lokman . Swager . Timothy M. . Thomas . Edwin L. . Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility . Macromolecules . American Chemical Society (ACS) . 39 . 9 . March 31, 2006 . 0024-9297 . 10.1021/ma060047q . 3350–3358. 2006MaMol..39.3350T .
- Zhang . Wei . Sprafke . Johannes K. . Ma . Minglin . Tsui . Emily Y. . Sydlik . Stefanie A. . Rutledge . Gregory C. . Swager . Timothy M. . June 24, 2009 . Modular functionalization of carbon nanotubes and fullerenes . Journal of the American Chemical Society . 131 . 24 . 8446–8454 . 10.1021/ja810049z . 1520-5126 . 19480427.
- Collins . William R. . Lewandowski . Wiktor . Schmois . Ezequiel . Walish . Joseph . Swager . Timothy M. . Claisen Rearrangement of Graphite Oxide: A Route to Covalently Functionalized Graphenes . Angewandte Chemie International Edition . Wiley . 50 . 38 . August 8, 2011 . 1433-7851 . 10.1002/anie.201101371 . 8848–8852. 21826769 . 1721.1/74222 . 481644 . free .
- Jeon . Intak . Peeks . Martin D. . Savagatrup . Suchol . Zeininger . Lukas . Chang . Sehoon . Thomas . Gawain . Wang . Wei . Swager . Timothy M. . May 2019 . Janus Graphene: Scalable Self-Assembly and Solution-Phase Orthogonal Functionalization . Advanced Materials (Deerfield Beach, Fla.) . 31 . 21 . e1900438 . 10.1002/adma.201900438 . 1521-4095 . 30968473. 2019AdM....3100438J . 1721.1/128021 . 106408715 . free .
- Luo . Shao-Xiong Lennon . Liu . Richard Y. . Lee . Sungsik . Swager . Timothy M. . July 14, 2021 . Electrocatalytic Isoxazoline-Nanocarbon Metal Complexes . Journal of the American Chemical Society . 143 . 27 . 10441–10453 . 10.1021/jacs.1c05439 . 1520-5126 . 34213315. 1864830 . 235710476 .
- Song . Changsik . Hu . Kan-Nian . Joo . Chan-Gyu . Swager . Timothy M. . Griffin . Robert G. . TOTAPOL: A Biradical Polarizing Agent for Dynamic Nuclear Polarization Experiments in Aqueous Media . Journal of the American Chemical Society . American Chemical Society (ACS) . 128 . 35 . August 16, 2006 . 0002-7863 . 10.1021/ja061284b . 11385–11390. 16939261 . 20020837 .
- Web site: dynupol.com - Registered at Namecheap.com. www.dynupol.com. October 17, 2021.
- Web site: Carl S. Marvel Award for Creative Polymer Chemistry – Division of Polymer Chemistry, Inc. . Division of Polymer Chemistry, Inc. – We believe in the strength of diversity in all its forms, because inclusion of and respect for diverse people, experiences, and ideas lead to superior solutions to world challenges and advances polymer chemistry as a global, multidisciplinary science. . June 7, 2017 . October 17, 2021.
- Web site: Timothy M. Swager, Ph.D., 2005 Homeland Security Award . Columbus Fellowship Foundation . April 10, 2005 . October 17, 2021.
- Web site: Timothy M. Swager . Lemelson . October 17, 2021.
- Web site: MSU sets commencement ceremonies May 10. Montana State University. October 17, 2021.
- Web site: ACS Award for Creative Invention.
- Web site: Welcome to NESACS – Awards | John Gustavus Esselen Award.
- Web site: ACS Award in Polymer Chemistry.