Timeline of condensed matter physics explained
This article lists the main historical events in the history of condensed matter physics. This branch of physics focuses on understanding and studying the physical properties and transitions between phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter.
This timeline includes developments in subfields of condensed matter physics such as theoretical crystallography, solid-state physics, soft matter physics, mesoscopic physics, material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials.
Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.
For history of fluid mechanics, see timeline of fluid and continuum mechanics.
Before quantum mechanics
Prehistory
Antiquity
Classical theories before the 19th century
19th century
- 1800 – The Voltaic pile, the first electric battery is developed by Alessandro Volta.[17]
- 1803–1808 – John Dalton reconsiders the atomic theory of matter in order to understand chemistry.[18]
- 1816 – David Brewster discovers stress birefringence in diamond.[19]
- 1819 – Experimentally Pierre Louis Dulong and Alexis Thérèse Petit find that the specific heat capacity of solids was close to a constant value given by Dulong–Petit law.[20]
- 1821 – Thomas Johann Seebeck discovers the thermoelectric effect, related by the Seebeck coefficient.[21]
- 1826 – Moritz Ludwig Frankenheim derives the 32 crystal classes by using the crystallographic restriction, consistent with Haüy's laws, that only 2, 3, 4 and 6-fold rotational axes are permitted.[22]
- 1827 – Georg Ohm, publishes the proportional relation between electric current and voltage in metals, known as Ohm's law.[23]
- 1834 – Jean-Charles Peltier discovers the Peltier effect: heating by an electric current at the junction of two different metals.[24]
- 1839 – William Hallowes Miller invents zonal relations by projecting the faces of a crystal upon the surface of a circumscribed sphere. Miller indices are defined which form a notation system in crystallography for planes in crystal (Bravais) lattices.[25]
- 1840 – James Prescott Joule formulates the equation for Joule heating quantifying the amount of heat produced in a circuit as proportional to the product of the time duration, the resistance, and the square of the current passing through it.[26]
- 1845 – Michael Faraday studies the interaction of light and magnetic fields with matter (Faraday rotation).[27]
- 1848 – Louis Pasteur discovers that sodium ammonium tartrate can crystallize in left- and right-handed forms and showed that the two forms can rotate polarized light in opposite directions. This was the first demonstration of molecular chirality, and also the first explanation of isomerism.[28]
- 1850 – Auguste Bravais develops the concept of Bravais lattices to describe periodicity in crystals. He derives the 14 space lattices.[29]
- 1853 – Discovery of Wiedemann–Franz law relating thermal and electrical conductivities, by Gustav Wiedemann and Rudolph Franz.[30]
- 1854 – Lord Kelvin discovers the thermoelectric Thomson effect.[31]
- 1859 – Gustav Kirchhoff introduces the concept of a blackbody and proves that its emission spectrum depends only on its temperature.[32]
- 1861–1865 – James Clerk Maxwell summarizes the fundamental equations of electromagnetism into an early version of Maxwell's equations and relates electromagnetism to light in his publications On Physical Lines of Force and A Dynamical Theory of the Electromagnetic Field.[33]
- 1872 – The Boltzmann transport equation, describing the statistical behaviour of a thermodynamic system not in a state of equilibrium, is devised by Ludwig Boltzmann.[34]
- 1872 – Ludvig Lorenz finds the Lorenz number, the constant of the Wiedemann–Franz law.[35]
- 1874 – Karl Ferdinand Braun discovered current rectification using a point-contact metal–semiconductor junction.
- 1875 – John Kerr discovers the double refraction of solid and liquids, now known as the Kerr effect.[36]
- 1879 – Edwin Hall discovers the Hall effect.[37]
- 1879 – Leonhard Sohncke lists the 65 crystallographic point systems using rotations and reflections in addition to translations.[38]
- 1880 – The first demonstration of the direct piezoelectric effect by the brothers Pierre Curie and Jacques Curie.[39]
- 1883 – Thomas Edison discovers thermionic emission or the Edison effect.[40]
- 1887 – Heinrich Hertz discovers the photoelectric effect.[41]
- 1888–1889 – Crystalline optical properties of liquid crystals and their ability to flow are first described by Friedrich Reinitzer and confirmed by Otto Lehmann.[42]
- 1891 – Derivation of the 230 space groups (by adding mirror-image symmetry to Sohncke's work) by a collaborative effort of Evgraf Fedorov and Arthur Schoenflies.[43] [44]
- 1895 – Wilhelm Conrad Röntgen discovers X-rays in experiments with electron beams in plasma.[32]
- 1895 – Hendrik Lorentz derives the Lorentz force for charged particles in electric and magnetic fields.[45]
- 1895 – Pierre Curie discovers empirically that the magnetic susceptibility of many materials is inversely proportional to temperature according to Curie's law. He also found that permanent magnetism was lost after a certain Curie temperature.
- 1896–1897 – Pieter Zeeman first observes the Zeeman splitting effect by applying a magnetic field to light sources.[46]
- 1897 – J. J. Thomson's experimentation with cathode rays led him to suggest a fundamental unit more than a 1000 times smaller than an atom, based on the high charge-to-mass ratio. He called the particle a "corpuscle", but later scientists preferred the term electron.[47]
20th century
Early 1900s
- 1900 – Max Planck uses for the first time quantum theory to explain black-body radiation.
- 1900 – Paul Drude proposes the Drude model to explain thermal and electric properties of metals.
- 1901 – Thermionic emission is first theoretically modeled by Owen Willans Richardson
- 1905 – Albert Einstein's Annus mirabilis papers postulating special relativity, the theory for Brownian motion and explaining the photoelectric effect using quantum mechanics.
- 1905 – Paul Langevin derives the classical theory for diamagnetism.
- 1907:
- 1909 – Lorentz develops the classical Lorentz oscillator model to describe the optical response of materials.[48]
- 1911 – Heike Kamerlingh Onnes and Gilles Holst discover superconductivity in mercury.
- 1912 – Max von Laue discovers diffraction of X-rays by crystals.
- 1912 – Peter Debye develops a model for the specific heat of solids in terms of phonons, known as Debye model.
- 1913 – William Henry Bragg and Lawrence Bragg use X-rays to analyze crystals.
- 1917 – Weiss and Auguste Piccard first observe the magnetocaloric effect.
- 1919 – Walter H. Schottky introduces the concept of shot noise while studying vacuum tubes.
- 1919 – Hendrika Johanna van Leeuwen rediscovers the Bohr–Van Leeuwen theorem, showing that magnetic properties of matter are due to quantum mechanics.
- 1920:
- 1923 – Pierre Auger discovers the Auger effect, where filling the inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom.
- 1923 – Louis de Broglie extends wave–particle duality to particles, postulating that electrons in motion are associated with waves. He predicts that the wavelengths are given by the Planck constant h divided by the momentum of the of the electron: .[32]
- 1923–1927 Electron wave diffraction is demonstrated experimentally independently by Davisson–Germer experiments and the experiments by George Paget Thomson and Alexander Reid.
- 1924 – Satyendra Nath Bose explains Planck's law using a new statistical law that governs bosons, and Einstein generalizes it to predict Bose–Einstein condensate. The theory becomes known as Bose–Einstein statistics.[32]
- 1924 – Wolfgang Pauli outlines the Pauli exclusion principle which states that no two identical fermions may occupy the same quantum state simultaneously, a fact that explains many features of the periodic table.[32]
- 1925 – Werner Heisenberg, Max Born, and Pascual Jordan develop the matrix mechanics formulation of quantum mechanics.[32]
- 1925 – Ernst Ising finds the analytical solution to the 1D Ising model.
- 1926:
- 1927:
- Max Born and J. Robert Oppenheimer introduce the Born–Oppenheimer approximation, which allows the quick approximation of the energy and wavefunctions of smaller molecules.
- Pauli models the paramagnetic contribution of itinerant electrons due to spins (Pauli paramagnetism).
- Walter Heitler and Fritz London introduce the concepts of valence bond theory and apply it to the hydrogen molecule.
- Llewellyn Thomas and Fermi develop the Thomas–Fermi model for a gas in a box.
- Chandrasekhara Venkata Raman studies optical photon scattering by electrons, now known as Raman spectroscopy.
- Walter Heitler uses Schrödinger's wave equation to show how two hydrogen atom wavefunctions join, with plus, minus, and exchange terms, to form a covalent bond.
- Robert S. Mulliken works, in coordination with Hund, to develop a molecular orbital theory where electrons are assigned to states that extend over an entire molecule and, in 1932, introduces many new molecular orbital terminologies, such as σ bond, π bond, and δ bond.
- Eugene Wigner relates degeneracies of quantum states to irreducible representations of symmetry groups.
- Arnold Sommerfeld, extends Drude's model using Fermi–Dirac statistics leading to the free electron model.
- Douglas Hartree introduced the Hartree equation for atoms.[51]
- 1928–1930 – John Hasbrouck Van Vleck formalizes the quantum theory of magnetism and formulates Van Vleck paramagnetism.
- 1928 – Linus Pauling outlines the quantum nature of the chemical bonds.
- 1928 – Friedrich Hund and Robert S. Mulliken introduce the concept of molecular orbitals.
- 1929:
- 1930:
- 1931:
- 1932 – Werner Heisenberg applies perturbation theory to the two-electron problem to show how resonance arising from electron exchange can explain exchange forces.
- 1933:
- 1935:
- 1937:
- 1938 – Superfluidity is discovered by the team of Pyotr Kapitsa.
- 1941 – Landau introduces the concept of second sound.[58]
- 1944 – Lars Onsager find an analytical solution for the 2D Ising model.
- 1947 – The first transistor is developed by William Shockley, John Bardeen and Walter Houser Brattain.
- 1947 – The theory of single layer graphite (graphene) is first published by P. R. Wallace.
- 1948 – Louis Néel discovers ferrimagnetism
- 1945–1946 – First neutron diffraction experiments are carried out by Ernest O. Wollan and independently by Clifford Shull.
- 1947–1948 – Hendrik Casimir and Dirk Polder at Philips Research Labs propose the existence of Casimir–Polder effect between two polarizable atoms and between such an atom and a conducting plate.[59] [60] After a conversation with Niels Bohr, who suggested it had something to do with zero-point energy.
- 1947–1948 – The formal development of quantum field theory by Richard Feynman, Julian Schwinger, Shin'ichirō Tomonaga and Freeman Dyson.
- 1949 – Werner Ehrenberg and Raymond E. Siday first predict Aharonov–Bohm effect.[61]
Second half of the 20th century
- 1950 – The Ginzburg–Landau theory phenomenological theory of superconductors is formulated by Vitaly Ginzburg and Landau.
- 1950 – Tomonaga introduces the Luttinger liquid model for electrons in 1D.
- 1952 – The plasmon (quantum of plasma oscillation in metals) is proposed by David Pines and David Bohm.
- 1952 – Friedel oscillations are first described by Jacques Friedel.
- 1953 – The occurrence of Van Hove singularities is first analyzed by Léon Van Hove for the case of phonon densities of states.
- 1953 – Charles H. Townes, James P. Gordon, and Herbert Zeiger demonstrate the first maser.[62]
- 1954:
- 1954–1957 – Malvin Ruderman and Charles Kittel develop the theory of indirect exchange interaction, later expanded by Tadao Kasuya and Kei Yosida into the RKKY theory.
- 1955 – Dresselhaus spin–orbit coupling is discovered by Gene Dresselhaus.[66]
- 1955 – Takeo Matsubara introduces his many-body Green's function based on Matsubara frequency formalism.
- 1956 – Theory of interacting electrons in solids, Fermi liquid theory is developed by Landau
- 1957:
- 1957–1959 – Kubo, and Schwinger introduced the KMS condition used it in 1959 to define thermodynamic Green's functions.
- 1958 – Philip W. Anderson starts developing the theory of metal-insulator transitions and Anderson localization.
- 1958–1960 – The first laser is built by Theodore Maiman at Hughes Aircraft Company, based on a patent from Townes and Arthur Leonard Schawlow.
- 1959 – Rashba spin-orbit coupling is discovered by Emmanuel Rashba and Valentin I. Sheka.[70]
- 1961–1964 – Schwinger, O. V. Konstantinov and Vladimir I. Perel, Leo Kadanoff and Gordon Baym, and Leonid Keldysh independently develop Keldysh formalism.[71]
- 1962:
- 1963 – John Hubbard, Martin Gutzwiller and Junjiro Kanamori each independently propose the Hubbard model.
- 1964 – Jun Kondō models the resistance minimum in metals leading to the Kondo model and the prediction of the Kondo effect. The development of the density functional theory starts with the theorems of Walter Kohn and Pierre Hohenberg.
- 1966–1967: Mermin–Wagner theorem is proved by N. David Mermin, Herbert Wagner and independently by Pierre Hohenberg.[73]
- 1966–1968 – Zhores Alferov and independently Herbert Kroemer created the first lasers based on heterostructures.[74]
- 1967 – Volker Heine coins the term ''condensed matter''.[75]
- 1967 – Negative-index materials are first described theoretically by Victor Veselago.[76]
- 1970 – French scientist, coins the term soft matter .[77]
- 1971:
- 1971–75 – Michael Fisher, Kenneth G. Wilson, and Leo Kadanoff come up with the renormalization group.
- 1972 – David Lee, Douglas Osheroff and Robert Coleman Richardson discovered two phase transitions of helium-3 along the melting curve, which were soon realized to be the two superfluid phases.
- 1972 – The concept of Berezinskii–Kosterlitz–Thouless phase transition in the XY model is developed by Vadim Berezinskii, J. Michael Kosterlitz and David J. Thouless.
- 1973 – Peter Mansfield formulates the physical theory of nuclear magnetic resonance imaging (NMRI)[78] [79] [80] [81]
- 1979:
- 1980 – The integer quantum Hall effect is discovered by Klaus von Klitzing
- 1980 – Richard Feynman proposes quantum computing.
- 1981 – The scanning tunneling microscope (STM), an instrument for imaging surfaces at the atomic level, was developed by Gerd Binnig and Heinrich Rohrer.
- 1982 – The fractional quantum Hall effect is discovered by Robert Laughlin, Horst Störmer, and Daniel Tsui.
- 1982 – Frank Wilczek explores the fractional statistics of quasiparticles in two dimensions and coins the term "anyon".
- 1985 – Fullerene C60 discovered by Richard Smalley, Robert Curl, and Harry Kroto.
- 1985 – Patrick A. Lee and A. Douglas Stone coin the term universal conductance fluctuations.[85]
- 1986 – Binnig, Calvin Quate and Christoph Gerber invent the first atomic force microscope (AFM).
- 1986 – Discovery of high-temperature superconductivity by K. Alex Müller and Georg Bednorz.
- 1987 – Karl Alexander Müller and Georg Bednorz discover high-temperature superconductivity in ceramics.
- 1988 – Giant magnetoresistance is discovered by Albert Fert and Peter Grünberg.
- 1988 – The conductance quantum are first demonstrated in quantum point contacts.[86]
- 1991 – Carbon nanotube are discovered by Sumio Iijima
- 1995 – Experimental Bose–Einstein condensate is first demonstrated by Eric Cornell, Carl Wieman and Wolfgang Ketterle.
- 1998 – Thomas Callister Hales proves Kepler's conjecture.
21st century
See also
Notes and References
- Web site: Hand tool - Neolithic, Stone, Flint Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: 2018-01-02 . Bronze Age . 2023-10-12 . HISTORY . en.
- Web site: 2018-01-03 . Iron Age . 2023-10-12 . HISTORY . en.
- Book: Mattis, Daniel C. . Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods . 2006-03-10 . World Scientific Publishing Company . 978-981-310-222-4 . en.
- Harvey . George . 2006 . A New History of Western Philosophy . Ancient Philosophy . 26 . 1 . 226–229 . 10.5840/ancientphil200626156 . 0740-2007.
- Web site: Aristotle - Logic, Metaphysics, Ethics Britannica . 2023-10-12 . www.britannica.com . en.
- Smith . A. Mark . 1982 . Ptolemy's Search for a Law of Refraction: A Case-Study in the Classical Methodology of "Saving the Appearances" and its Limitations . Archive for History of Exact Sciences . 26 . 3 . 221–240 . 10.1007/BF00348501 . 41133649 . 117259123 . 0003-9519.
- Web site: Weisstein . Eric W. . Kepler Conjecture . 2023-10-12 . mathworld.wolfram.com . en.
- Web site: 2023-09-12 . Snell's law Definition, Formula, & Facts Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: Hooke's law Description & Equation Britannica . 2023-10-12 . www.britannica.com . 11 October 2023 . en.
- Book: American Heritage Dictionary . The American Heritage Science Dictionary . January 2005 . Houghton Mifflin Harcourt . 978-0-618-45504-1 . 428.
- Web site: Electromagnetism - Discovery, Uses, Physics Britannica . 2024-04-04 . www.britannica.com . en.
- Gerald Küstler . 2007 . Diamagnetic Levitation – Historical Milestones . Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. . 52, 3 . 265–282.
- Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
- Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
- Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
- Web site: 2023-09-25 . Alessandro Volta Biography, Facts, Battery, & Invention Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: Atom - Dalton, Bohr, Rutherford Britannica . 2023-10-12 . www.britannica.com . en.
- Book: Bain, Ashim Kumar . Crystal Optics: Properties and Applications . 2019-05-29 . John Wiley & Sons . 978-3-527-82303-1 . en.
- Web site: Dulong–Petit law Thermodynamics, Heat Capacity, Specific Heat Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: Seebeck effect Thermoelectricity, Temperature Gradients & Heat Britannica . 2023-10-12 . www.britannica.com . en.
- Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
- Web site: 2023-09-05 . Ohm's law Physics, Electric Current, Voltage Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: 2023-09-26 . Peltier effect Definition, Discovery, & Facts Britannica . 2023-10-12 . www.britannica.com . en.
- Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
- Web site: 2023-10-07 . James Prescott Joule Biography & Facts Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: Faraday effect Magnetic Field, Electromagnetic Induction & Polarization Britannica . 2023-10-12 . www.britannica.com . en.
- Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
- Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
- Franz . R. . Wiedemann . G. . 1853 . Ueber die Wärme-Leitungsfähigkeit der Metalle . Annalen der Physik und Chemie . de . 165 . 8 . 497–531 . 10.1002/andp.18531650802. 1853AnP...165..497F .
- Web site: Thomson effect Thermal Conduction, Heat Transfer & Joule-Thomson Britannica . 2023-10-12 . www.britannica.com . en.
- Book: Peacock, Kent A.. The Quantum Revolution: A Historical Perspective . 2008. Greenwood Press . Westport, Connecticut . 9780313334481 . 175–183.
- Web site: Who was James Clerk Maxwell? . 2023-10-12 . clerkmaxwellfoundation.org.
- Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
- Lorenz . L. . 1872 . Bestimmung der Wärmegrade in absolutem Maasse . Annalen der Physik und Chemie . de . 223 . 11 . 429–452 . 10.1002/andp.18722231107. 1872AnP...223..429L .
- Kerr . John . 1875 . XL. A new relation between electricity and light: Dielectrified media birefringent . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . en . 50 . 332 . 337–348 . 10.1080/14786447508641302 . 1941-5982.
- Web site: 2023-09-11 . Hall effect Definition & Facts Britannica . 2023-10-12 . www.britannica.com . en.
- Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
- Web site: 2023-09-01 . Piezoelectricity Piezoelectricity, Acoustic Wave, Ultrasound Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: Thermionic emission Thermionic Emission, Vacuum Tubes, Electron Flow Britannica . 2023-10-12 . www.britannica.com . en.
- Web site: 2023-10-09 . Photoelectric effect Definition, Examples, & Applications Britannica . 2023-10-12 . www.britannica.com . en.
- Mitov . Michel . 2014-05-19 . Liquid-Crystal Science from 1888 to 1922: Building a Revolution . ChemPhysChem . en . 15 . 7 . 1245–1250 . 10.1002/cphc.201301064 . 24482315 . 1439-4235.
- Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
- Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
- Book: Dahl, Per F. . Flash of the Cathode Rays: A History of J J Thomson's Electron . CRC Press . 1997 . 10.
- Web site: Milestone 1 : Nature Milestones in Spin . 2018-09-09 . www.nature.com . en.
- Web site: 2023-08-26 . J.J. Thomson Biography, Nobel Prize, & Facts Britannica . 2023-10-12 . www.britannica.com . en.
- Book: Dressel . Martin . Electrodynamics of Solids: Optical Properties of Electrons in Matter . Grüner . George . 2002-01-17 . Cambridge University Press . 978-0-521-59253-6 . 1 . 10.1017/cbo9780511606168.008.
- See J. Valasek . 1920 . Piezoelectric and allied phenomena in Rochelle salt . Physical Review . 15 . 6 . 537 . 1920PhRv...15..505. . 10.1103/PhysRev.15.505. and J. Valasek . 1921 . Piezo-Electric and Allied Phenomena in Rochelle Salt . Physical Review . 17 . 4 . 475 . 1921PhRv...17..475V . 10.1103/PhysRev.17.475 . free . 11299/179514.
- Web site: The Nobel Prize in Chemistry 1953 . 2023-10-10 . NobelPrize.org . en-US.
- Hartree . D. R. . 1928 . The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion . Mathematical Proceedings of the Cambridge Philosophical Society . en . 24 . 1 . 111–132 . 10.1017/S0305004100011920 . 1928PCPS...24..111H . 121520012 . 0305-0041.
- Book: Peierls, Rudolf Ernst . Bird of passage: recollections of a physicist . 1985 . Princeton Univ. Press . 978-0-691-08390-2 . Princeton paperbacks . Princeton, N.J..
- Web site: Plasma - Natural, State, Matter Britannica . 2024-03-23 . www.britannica.com . en.
- Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
- Rjabinin . J. N. . Shubnikow . L. W. . 1935 . Magnetic Properties and Critical Currents of Supra-conducting Alloys . Nature . 135 . 3415 . 581 . 1935Natur.135..581R . 10.1038/135581a0 . 4113840.
- May 1935 . Self-consistent field, with exchange, for beryllium . Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences . en . 150 . 869 . 9–33 . 10.1098/rspa.1935.0085 . 1935RSPSA.150....9H . 0080-4630 . Hartree . D. R. . Hartree . W. . 120853378 .
- Vishwanath . Ashvin . 2015-09-08 . Where the Weyl Things Are . Physics . en . 8 . 84 . 10.1103/PhysRevX.5.031013. 1502.04684 .
- Landau, L. (1941). Theory of the superfluidity of helium II. Physical Review, 60(4), 356.
- Casimir . H. B. G. . Hendrik Casimir . Polder . D. . Dirk Polder . 1948-02-15 . The Influence of Retardation on the London–van der Waals Forces . . en . 73 . 4 . 360–372 . 1948PhRv...73..360C . 10.1103/PhysRev.73.360 . 0031-899X.
- Casimir . H. B. G. . 1948 . On the attraction between two perfectly conducting plates . live . Proc. Kon. Ned. Akad. Wet. . 51 . 793 . https://web.archive.org/web/20130418012405/http://www.dwc.knaw.nl/DL/publications/PU00018547.pdf . 2013-04-18.
- Ehrenberg, W . Siday, RE . 1949 . The Refractive Index in Electron Optics and the Principles of Dynamics . . 62 . 1 . 8–21 . 1949PPSB...62....8E . 10.1.1.205.6343 . 10.1088/0370-1301/62/1/303.
- Web site: December 1958: Invention of the Laser . 2023-09-12 . www.aps.org . en.
- J. C. Slater . G. F. Koster . George F. Koster . 1954 . Simplified LCAO method for the Periodic Potential Problem . . 94 . 6 . 1498–1524 . 1954PhRv...94.1498S . 10.1103/PhysRev.94.1498.
- Book: Geballe . T. H. . Bernd Theodor Matthias 1918–1990 . Hulm . J. K. . National Academy of Science . 1996.
- Fröhlich . H. . July 1954 . Electrons in lattice fields . Advances in Physics . 3 . 11 . 325–361 . 10.1080/00018735400101213 . 0001-8732.
- Dresselhaus . G. . 1955-10-15 . Spin–Orbit Coupling Effects in Zinc Blende Structures . Physical Review . 100 . 2 . 580–586 . 1955PhRv..100..580D . 10.1103/PhysRev.100.580.
- Kubo . Ryogo . 1957 . Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems . J. Phys. Soc. Jpn. . 12 . 6 . 570–586 . 10.1143/JPSJ.12.570.
- Kubo . Ryogo . Yokota . Mario . Nakajima . Sadao . 1957 . Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance . J. Phys. Soc. Jpn. . 12 . 11 . 1203–1211 . 10.1143/JPSJ.12.1203. 1957JPSJ...12.1203K .
- Web site: Rostky . George . Micromodules: the ultimate package . https://web.archive.org/web/20100107111717/http://www.eetimes.com/special/special_issues/millennium/milestones/kilby.html . 2010-01-07 . 2018-04-23 . EE Times.
- E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
- Book: Kamenev, Alex . Field theory of non-equilibrium systems . 2011 . Cambridge University Press . 9780521760829 . Cambridge . 721888724.
- W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder”, Physical Review Letters 9, 9 (1962),
- Wagner . Herbert . Schollwoeck . Ulrich . 2010-10-08 . Mermin-Wagner Theorem . Scholarpedia . en . 5 . 10 . 9927 . 10.4249/scholarpedia.9927 . 2010SchpJ...5.9927W . 1941-6016 . free .
- Book: Josephson, Paul R. . Lenin's Laureate: Zhores Alferov's Life in Communist Science . 2010 . MIT Press . 978-0-262-29150-7.
- Web site: Philip Anderson . 27 March 2012 . Department of Physics . Princeton University.
- Slyusar . V.I. . October 6–9, 2009 . Metamaterials on antenna solutions . 7th International Conference on Antenna Theory and Techniques ICATT’09 . Lviv, Ukraine . 19–24.
- Web site: Soft matter physics . October 10, 2023 . Institute of Physics.
- Mansfield . P . Grannell . P K . 1973 . NMR 'diffraction' in solids? . Journal of Physics C: Solid State Physics . 6 . 22 . L422 . 1973JPhC....6L.422M . 10.1088/0022-3719/6/22/007 . 4992859.
- Garroway . A N . Grannell . P K . Mansfield . P . 1974 . Image formation in NMR by a selective irradiative process . Journal of Physics C: Solid State Physics . 7 . 24 . L457 . 1974JPhC....7L.457G . 10.1088/0022-3719/7/24/006 . 4981940.
- Mansfield . P. . Maudsley . A. A. . 1977 . Medical imaging by NMR . British Journal of Radiology . 50 . 591 . 188–94 . 10.1259/0007-1285-50-591-188 . 849520 . 26374556.
- Mansfield . P . 1977 . Multi-planar image formation using NMR spin echoes . Journal of Physics C: Solid State Physics . 10 . 3 . L55–L58 . 1977JPhC...10L..55M . 10.1088/0022-3719/10/3/004 . 121696469.
- Meier . Eric J. . An . Fangzhao Alex . Gadway . Bryce . 2016-12-23 . Observation of the topological soliton state in the Su–Schrieffer–Heeger model . Nature Communications . en . 7 . 1 . 13986 . 1607.02811 . 2016NatCo...713986M . 10.1038/ncomms13986 . 2041-1723 . 5196433 . 28008924.
- Su . W. P. . Schrieffer . J. R. . Heeger . A. J. . 1979-06-18 . Solitons in Polyacetylene . Physical Review Letters . en . 42 . 25 . 1698–1701 . 1979PhRvL..42.1698S . 10.1103/PhysRevLett.42.1698 . 0031-9007.
- Linke . Heiner . 2023 . Quantum dots — seeds of nanoscience . Swedish Academy of Science.
- Lee . P. A. . Stone . A. Douglas . 1985-10-07 . Universal Conductance Fluctuations in Metals . Physical Review Letters . en . 55 . 15 . 1622–1625 . 10.1103/PhysRevLett.55.1622 . 10031872 . 1985PhRvL..55.1622L . 0031-9007.
- van Houten . Henk . Beenakker . Carlo . 1996-07-01 . Quantum Point Contacts . Physics Today . en . 49 . 7 . 22–27 . 10.1063/1.881503 . cond-mat/0512609 . 1996PhT....49g..22V . 56100437 . 0031-9228.
- Schwab . K. . E. A. Henriksen . J. M. Worlock . M. L. Roukes . 2000 . Measurement of the quantum of thermal conductance . Nature . 404 . 6781 . 974–7 . 2000Natur.404..974S . 10.1038/35010065 . 10801121 . 4415638.
- Castelvecchi . Davide . Sanderson . Katharine . 2023-10-03 . Physicists who built ultrafast 'attosecond' lasers win Nobel Prize . Nature . 622 . 7982 . 225–227 . en . 10.1038/d41586-023-03047-w. 37789199 . 2023Natur.622..225C . 263621459 .
- Web site: February 12, 2004 . A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates . Science News . Nasa Science . August 14, 2023 . April 2, 2019 . https://web.archive.org/web/20190402130901/https://science.nasa.gov/science-news/science-at-nasa/2004/12feb_fermi . dead .
- Web site: Graphene Properties, Uses & Structure Britannica . 2023-10-12 . www.britannica.com . en.
- Kane . C. L. . Mele . E. J. . 2005-11-23 . Quantum Spin Hall Effect in Graphene . Physical Review Letters . 95 . 22 . 226801 . 10.1103/PhysRevLett.95.226801. cond-mat/0411737 .
- Web site: Tsinghua Professor Xue Qikun awarded Oliver E. Buckley Prize-Tsinghua University . 2024-08-22 . www.tsinghua.edu.cn.
- Web site: 2020-03-02 . Scientists Discover How to Use Time Crystals to Power Superconductors Weizmann USA . 2023-10-12 . American Committee for the Weizmann Institute of Science.
- Xu . Su-Yang . Belopolski . Ilya . Alidoust . Nasser . Neupane . Madhab . Bian . Guang . Zhang . Chenglong . Sankar . Raman . Chang . Guoqing . Yuan . Zhujun . Lee . Chi-Cheng . Huang . Shin-Ming . Zheng . Hao . Ma . Jie . Sanchez . Daniel S. . Wang . BaoKai . 2015-08-07 . Discovery of a Weyl fermion semimetal and topological Fermi arcs . Science . en . 349 . 6248 . 613–617 . 10.1126/science.aaa9297 . 0036-8075. 1502.03807 .
- Web site: 2020-05-08 . Researchers map tiny twists in "magic-angle" graphene . 2023-10-12 . MIT News Massachusetts Institute of Technology . en.