The General System has been described in [Zeigler76] and [ZPK00] with the standpoints to define (1) the time base, (2) the admissible input segments, (3) the system states, (4) the state trajectory with an admissible input segment, (5) the output for a given state.
A Timed Event System defining the state trajectory associated with the current and event segments came from the class of General System to allows non-deterministic behaviors in it [Hwang2012]. Since the behaviors of DEVS can be described by Timed Event System, DEVS and RTDEVS is a sub-class or an equivalent class of Timed Event System.
A timed event system is a structure
l{G}=<Z,Q,Q0,QA,\Delta>
where
Z
Q
Q0\subseteqQ
QA\subseteqQ
\Delta\subseteqQ x
\Omega | |
Z,[tl,tu] |
x Q
(q,\omega,q')\in\Delta
q\inQ
q'\inQ
\omega\in
\Omega | |
Z,[tl,tu] |
(q1,\omega1,q2)
(q3,\omega2,q4)\in\Delta
q2=q3
\omega1
\omega2
(q,\omega1,p)
(p,\omega2,q')\in\Delta
(q,\omega1\omega2,q')\in\Delta
Given a timed event system
l{G}=<Z,Q,Q0,QA,\Delta>
t
0\let<infty
t
l{G}
L(l{G},t)
L(l{G},t)=\{\omega\in\OmegaZ,[0,t]:\exists(q0,\omega,q)\in \Delta,q0\inQ0,q\inQA\}.
We call an event segment
\omega\in\OmegaZ,[0,t]
t
l{G}
\omega\inL(l{G},t)
By sending the observation time length
t
l{G}
L(l{G},infty)
L(l{G},infty)=\{\omega\in\underset{t → infty}\lim \OmegaZ,[0,t]:\exists\{q:(q0,\omega,q)\in \Delta,q0\inQ0\}\subseteqQA\}.
We call an event segment
\omega\in\underset{t → infty}\lim \OmegaZ,[0,t]
l{G}
\omega\inL(l{G},infty)